
Université de Versailles Saint-Quentin École Doctorale "SoFt"

Approche statique et dynamique pour
l’évaluation de performances de codes

scientifiques

Static and Dynamic Approach for Performance
Evaluation of Scientific Codes

THÈSE

présentée et soutenue publiquement le 11 Juillet 2011

pour l’obtention du

Doctorat de l’université de Versailles Saint-Quentin
(spécialité informatique)

par

Souad Koliaï

Composition du jury

Directeur de thèse : William Jalby - Professeur, Université de Versailles

Président : Raymond Namyst - Professeur, Université de Bordeaux 1

Rapporteurs : François Bodin - Professeur, Université de Rennes 1
David Levinthal - Docteur, Google, Mountain View, USA

Examinateurs : Denis Barthou - Professeur, Université de Bordeaux 1
Julia Fedorova - Intel, Nizhny Novgorod, Russie

Remerciements

Quel doctorant n’a pas rêvé du moment de la rédaction des remerciements?
Pour ma part, ce jour là est arrivé et je tiens à remercier toutes les personnes
m’ayant entourées durant ces quatre dernières années.

Je tiens, premièrement, à remercier mon directeur de thèse, William Jalby,
pour m’avoir encadré durant ces quatre années. Je ne connais pas beaucoup de
personnes qui ont une telle passion pour leur travail. Sa détermination à vouloir
toujours aller plus loin pour comprendre, m’a permis de me rendre compte que
"même quand on ne peut plus, on peut encore". Une chose que je retiendrai.

Je tiens ensuite à remercier les membres du jury sans qui ma soutenance
n’aurait pu avoir lieu. Tout d’abord, merci à mes rapporteurs : François Bodin et
David Levinthal, qui ont pris le soin de relire mon manuscrit et de proposer des
améliorations pour mes travaux. Je remercie mes examinateurs : Julia Fedorova,
qui a accepté de venir de Russie pour assister à ma soutenance ; Raymond Namyst,
président de mon jury, qui s’est déplacé de Bordeaux pour ma soutenance ; Denis
Barthou, qui a d’abord été mon enseignant en master et avec qui j’ai collaboré à de
nombreuses reprises durant ma thèse.

Je tiens à remercier ceux qui étaient là lorsque je suis arrivée en stage. Tout
d’abord Marc Pérache pour m’avoir permis de récupérer un très beau bureau et une
machine. Patrick Carribault, qui a soutenu sa thèse à mon arrivée dans l’équipe et
qui m’a permis de récupérer une confortable chaise. Sébastien Donadio, qui m’avait
accueilli au sein de l’équipe tout d’abord en disant "haha, une fille en HPC !", puis en
se rattrapant en me donnant de très bons conseils durant toutes mes années de thèse.

Et puis il y a les collègues. Tout d’abord, Stéphane Zuckerman, avec qui j’ai eu
la plaisir de collaborer à de nombreuse reprises, mais qui est surtout un camarade de
thèse qui-parle-aux-ordinateurs, avec qui j’ai partagé le bureau durant 3 ans. Non,
sans quelques discussions animées qui se terminaient par le fait que "moi j’avais
toujours raison"...

Julien Jaeger, avec qui j’étais en master, et qui a aussi été mon co-bureau durant
3 ans. Merci, pour les blagues du matin, les chansons "pas très intelligentes" qui
collent à l’esprit et les parties de "tout-le-monde-veut-prendre-sa-place" !

Yuriy, le dernier locataire de mon ancien bureau, qui par sa venue a animé le
bureau grâce aux discussions plus qu’animées avec Stéphane sur le communisme !
Merci à la cloche à trolls :)

Le temps est venu pour changer de bureau, de collègues de bureau et de rentrer
dans l’ère de l’Exascale ! Une nouvelle aventure, dans un nouveau bureau, avec de
nouvelles personnes. Parmi elles, je tiens à remercier Jean-Thomas Acquaviva, de
m’avoir encadré lors de ma dernière année de thèse, loin d’être la plus simple. Je le
remercie d’avoir supporté mon caractère "robotique" lors de ma rédaction de thèse.
Blop ! :)

Un grand merci à Jean Christophe Beyler, que j’ai d’abord rencontré lors de

ii

mon stage aux Etats-Unis, et qui est toujours de très bon conseil. Je lui dois la
relecture de mon manuscrit, la correction des nombreuses fautes d’anglais avec des
commentaires écrits en franco-anglais. JC, okay, "je vire les parenthèse"! :)

Puis mes nouveaux collègues de bureau. Cédric Valensi, monsieur je désassemble,
je patch et je me demande pourquoi "la vie est si injuste" :). Cédric, ton tour arrivera
et tu auras le plaisir de rédiger des remerciements aussi. Emmanuel Oseret pour la
pertinences de toutes ses remarques ; Eric Petit, pour le ping pong verbal et avec
qui il fallait toujours être prêt à riposter.

Je tiens à saluer, Bettina Krammer, qui nous rappelait qu’il y avait un livrable
à faire pour le mois dernier, ainsi que Grigori Fursin, José Noudohouhenou, Andres
Charif-Rubial et tous les collègues du laboratoires Exascale.

Enfin, les crypto-kids : Aurélie Bauer, la doyenne des crypto-thésards ; Sorina
et ses courbes elliptiques ; Jean-Michel à cause de qui on dit crypto-thésarDs et
non crypto-thésarDEs ; Joana, que j’ai rencontré en stage et dont j’ai été le témoin
de mariage il y a moins d’un mois (merci pour cette belle histoire d’amitié).

Puis viennent les amis qui m’ont soutenu durant ces quatre années de
thèse et qui comprenaient mes sautes d’humeur dus à "un bug", "une deadline
d’article", etc. Je les remercie de me faire toujours penser à autre chose lors des
moments délicats de ma thèse. Merci à Leïla pour les weekends shopping et à
Feriel pour les mails de soutien lorsque je rédigeais et qu’il faisait 25 degrés à Paris !!

Merci à ceux que j’ai rencontré aux Etats-Unis lors de mon stage. Merci d’avoir
fait de mon expérience américaine, une belle expérience.

Le meilleur pour la fin. Ma famille. Je tiens à remercier mes parents pour
leur soutien dans mes choix, et leur encouragement durant ces quatre années de
thèse. Un merci tout particulier à ma soeur Samia, d’avoir supporté une colloc’ en
rédaction d’article, en rédaction de thèse, une thésarde en somme. Amina, ma plus
jeune soeur qui a trouvé ca drôle de soutenir un jour avant moi :) et enfin mon
frère, El Hachemi qui a toujours été là pour des conseils de grand frère. Merci à
vous !

iii

À mes parents.

v

Résumé :

La complexité grandissante des architectures modernes, rend de plus en plus
difficile la tâche des programmeurs à comprendre le comportement des programmes
s’exécutant sur ces machines. De plus, les compilateurs actuels génèrent des codes
difficiles à comprendre, dû à l’application d’optimisations plus agressives. Cette
complexité croissante, tant au niveau des architectures qu’au niveau des compila-
teurs, renforce le besoin d’une analyse de performance pour aider le programmeur.
Différents outils et techniques existent mais aucun outil n’est suffisant, seul, pour
résoudre tous les problèmes.

Cette thèse propose deux outils, différents et complémentaires, pour l’évaluation
de performances, de code binaire. Le premier outil, l’analyse statique de Maqao,
effectue une évaluation statique des performances du code, et donne une estimation
pour la qualité du code, par exemple, les ratios de vectorisation. Le second outil,
Decan, est une nouvelle approche d’analyse de performances qui cible les instruc-
tions d’accès mémoire. L’objectif de Decan est de détecter le groupe d’instructions
responsable des faibles performances. Les deux outils ont été combinés pour pro-
poser une méthodologie semi-automatique pour l’évaluation de performances.

Mots clés : analyse de performance, ré-écriture binaire, accès mémoire,
optimisation de code, analyse statique, vectorisation, modèle de performance

vi

Abstract:

Current hardware tends to increase pressure on programmers to optimize the
codes. The complexity of modern architectures makes it more difficult to under-
stand the behavior of the programs running on them. Moreover, the compilers
apply aggressive optimizations which make the compiled code more difficult
to understand. This increasing complexity shows that there is still a need of
performance analysis to help the programmers. Different tools and techniques exist,
but no single tool is a panacea; instead, different tools have different strengths.

This thesis proposes two different and complementary tools for performance
analysis on binary code. The first tool, Maqao’s static analysis, performs a static
evaluation of the performance of the code, and gives an estimate of the quality of the
code, such as the vectorization ratios. The second tool, Decan, is a new approach
of performance analysis that targets the memory instructions to pinpoint the set
of instructions responsible of the poor performance. Both tools are combined to
propose a semi-automated methodology for performance evaluation.

Keywords: performance analysis, binary patching, memory access, code
optimization, static analysis, vectorization, performance model

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Organization . 2

2 Computer Evolution and Performance Analysis 3
2.1 Context . 3
2.2 Memory Wall . 4

2.2.1 Caches: implementation and behavior 4
2.2.2 Cache prefetching . 11
2.2.3 Conclusion . 12

2.3 Microarchitecture Complexity . 12
2.3.1 Instruction pipeline . 12
2.3.2 Out-of-order execution . 17
2.3.3 Branch prediction . 20
2.3.4 Loop Stream Detection . 20
2.3.5 Conclusion . 20

2.4 Compiler impact . 21
2.5 Performance Analysis Tools . 21

2.5.1 Introduction . 21
2.5.2 Static profiling . 21
2.5.3 Dynamic profiling . 23

2.6 Comparison of tools . 32
2.7 Conclusion . 32

3 MAQAO Static Analysis Tool 35
3.1 Introduction . 35
3.2 Maqao Framework . 36
3.3 Code Restructuring . 37

3.3.1 Call graph . 38
3.3.2 Control flow graph . 38
3.3.3 Data dependence graph . 38
3.3.4 Loop detection . 39

3.4 Performance Model [24, 66] . 40
3.4.1 The Core 2 microarchitecture 40
3.4.2 Predecoding . 43
3.4.3 Decoding . 43
3.4.4 Reorder-buffer-read stage . 44
3.4.5 Back-end . 44
3.4.6 Vectorization ratios . 45
3.4.7 Performance prediction . 47
3.4.8 Others metrics . 49

3.5 Maqao’s Static Analysis on Numerical Recipes 51
3.6 Maqao’s Static Analysis on Real-Life Applications 51

3.6.1 3D Combustion simulation code 51
3.6.2 Iterative solver for the Navier-Stokes equation 54

viii Contents

3.7 Search for accuracy . 55
3.8 Limitations . 55
3.9 Conclusion . 56

4 DECAN: Decremental Performance Analysis Tool 57
4.1 Introduction . 57
4.2 Overview . 58
4.3 Motivation . 60

4.3.1 Decoupling semantic from analysis 60
4.3.2 Alteration and preservation 61

4.4 Concept and Infrastructure . 61
4.4.1 Decan’s algorithm . 61
4.4.2 Instruction detection . 63
4.4.3 Instruction removal . 63

4.5 Automatic Kernel Executor . 68
4.5.1 The GDB process . 70
4.5.2 Building the loader . 70
4.5.3 Branch to the loader . 70
4.5.4 Conclusion . 70

4.6 Decan and Real-Life Applications . 70
4.6.1 3D Combustion simulation code 70
4.6.2 Iterative solver for the Navier-Stokes equation 71

4.7 Limitations . 72
4.8 Conclusion . 74

5 Approach to Application Performance Tuning 77
5.1 Introduction . 77
5.2 Toward a Better Evaluation Process 78

5.2.1 Static analysis using Maqao 78
5.2.2 Hardware counters and memory traces 79
5.2.3 Decremental analysis using Decan 81
5.2.4 Tools and targeted features 81

5.3 Experimental Results . 81
5.3.1 Experimental setup . 82
5.3.2 3D Combustion simulation code 82
5.3.3 Iterative solver for the Navier-Stokes equation 83

5.4 Conclusion . 87

6 Conclusion 89
6.1 Contributions of this thesis . 89
6.2 Future Work . 90

Appendix 91

A Microbenchmarking on Core 2 and Nehalem 93
A.1 Microbenchmarks Description . 93
A.2 Methodology Description . 95

A.2.1 Assembly Kernels . 95
A.2.2 C Kernels . 95

A.3 Results Description . 95

Contents ix

A.3.1 The performance with aligned instructions in assembly kernels 96
A.3.2 The performance with unaligned instructions in assembly kernels103
A.3.3 The performance measurements in C kernels 105

Bibliography 109

List of Figures

2.1 Processor-memory performance gap: starting in the 1980 perfor-
mance, the microprocessor and memory performance over the years. 4

2.2 Minimum cache configuration [42]. 4
2.3 3-level caches configuration [42]. The L1i is the instruction cache

while the L1d is the data cache. 5
2.4 Multicore configuration [42]. There are two processors with two cores

each sharing the main memory. Each core has 2 threads that are
sharing the first level cache (instruction and data). Each core has its
own first level cache, and the cores of the processor share the high
level caches. The processors do not share any cache. 6

2.5 Cache miss rate versus cache size in the SPECINTCPU2000 [31, 105]. 7
2.6 The cache line entry structure with the tag, the data block and the

valid bit. 8
2.7 The impact of the cache size and the associativity on L2 cache misses,

on gcc benchmark (cache line = 32 bytes) [42]. 9
2.8 Fully associative, direct mapping and set associative cache implemen-

tations. 9
2.9 MESI protocol transitions [42]. 10
2.10 A view of a five-stages pipeline. 13
2.11 Instruction pipelining in a 4-stages pipeline. When full, there is a

throughput of one instruction per cycle. 13
2.12 Instruction execution in the two pipes in a Pentium 1. An AGI oc-

curred in the V-pipe because ESI register is modified in an instruction
and used to address memory 3 instructions later. The U-pipe is idle
because of the lockstep execution of the Pentium 1. 14

2.13 A couple of instructions that can be executed in parallel if they are
independent. 18

2.14 The execution units in the Pentium II, III, and Pentium Pro. 18
2.15 The execution units in the Core2 and Nehalem architectures. 19
2.16 The execution units in Sandy Bridge architecture. 20
2.17 IACA report summary [99]. 23
2.18 IACA detailed report [99]. 23
2.19 Profiling and optimization workflow with generic measurement tools

(left) and with PerfExpert (right) [30]. 24
2.20 PerfExpert output for matrix-matrix multiplication [30]. 25
2.21 PerfExpert output for DGELASTIC correlating two runs [30]. 26
2.22 Simplified list of optimizations with examples [30]. 26
2.23 Simplified list of optimizations without examples [30]. 26
2.24 Architecture of TAU Performance System. Analysis and Visualiza-

tion [90]. 27
2.25 Program Database Toolkit PDT [90]. 28
2.26 ParaProf Architecture [90]. 28
2.27 The runtime overhead of the LoopProf tool when compared to ap-

plications run natively, executed with no instrumentation under Pin,
and instrumented by the BblCount Pintool [76]. 30

xii List of Figures

3.1 Maqao framework with the connexion between different modules. . 37
3.2 Maqao user web interface. 38
3.3 A Maqao call graph for a basic program. 38
3.4 A Maqao control flow graph for a basic program. 39
3.5 Maqao data dependence graph for a basic program. A node repre-

sents an instruction. An edge corresponds to a register dependency
between two nodes. Each edge is tagged with a register that is the
subject of the dependency, and the dependency distance. 39

3.6 Intel Core2 microarchitecture. [2] . 40
3.7 Core2 execution unit overview [94]. 46
3.8 Maqao display of the performance model metrics computed for a

target loop. 50
3.9 Two examples of codes. The code (a) corresponds to the hottest loop

of the hottest subroutine of the AIOLOS application. It implements
the red black iterative solver [87]. The code (b) corresponds to the
hottest loop of the hottest subroutine of the ITRLSOL application. It
implements a sparse matrix-vector product [40, 7]. 53

3.10 Maqao’s static analysis performed on RBgauss. Different metrics are
computed: front-end, back-end, vectorization ratios, and performance
predictions. 53

3.11 Maqao’s static analysis performed on EUFLUXm. Different metrics are
computed: front-end, back-end, vectorization ratios, and performance
predictions. 54

4.1 Decremental performance analysis infrastructure (Decan). 59
4.2 Example of a loop that shows a 4K-aliasing problem. Code extracted

from Matvec routine provided by MAGMA Giebereitechnologie GmbH. 60
4.3 Performance in cycles per iteration when applying the nop transfor-

mation on Matvec subroutine. 62
4.4 Portion of assembly code that corresponds to two juxtaposed DAXPY

[104]. 63
4.5 Code example to illustrate the concept of grouping. The instruc-

tions in the assembly code with the same color (gray and orange),
correspond to an access to the same source array. 66

4.6 FPEC program instrumentor. 67
4.7 FPEC dynamic library. 68
4.8 The Automatic Kernel Execution process. It describes the different

steps of the process from memory context dumping to the branch to
the loader. The purpose is to run the target function in its original
environment without running the whole application. 69

4.9 The most time-consuming loop in RBgauss. There are 3 different
arrays: AM(2D), and SU(1D) are read-only, PHI(1D) is read and
written. 71

4.10 Performance in cycles per iteration when applying the nop on RBgauss
subroutine. The X axis corresponds to the number of cycles per it-
eration and the Y axis corresponds to the different version of bina-
ries generated by Decan when patching one memory access (load or
store) or all the memory accesses (all the loads, all stores and all the
loads/stores). 72

List of Figures xiii

4.11 Performance in cycles per iteration when applying the nop transfor-
mation on a set of instructions accessing to the same base address, on
RBgauss subroutine. The X axis corresponds to the number of cycles
and the Y axis to the original binary, grouping version and all the
loads version of binaries. 73

4.12 The most time-consuming quadruply nested loop in EUFLUXm. There
are 4 different arrays: vecx(2D), ompu(3D), and ompl(3D) are read-
only, vecy (2D) is read and written. 73

4.13 Performance in cycles per iteration when applying the nop transfor-
mation on EUFLUXm subroutine. The X axis corresponds to the num-
ber of cycles per iteration and the Y axis corresponds to the different
versions binaries generated by Decan when patching one memory
access (load or store) or all the memory accesses (all the loads, all
stores and all the loads/stores). 74

4.14 Performance in cycles per iteration when applying the nop transfor-
mation on a set of instructions accessing to the same base address,
on EUFLUXm subroutine. The X axis corresponds to the number of
cycles and the Y axis to the original binary, grouping version and all
loads version of binaries. Decan allows in one glance to determine
the large room for improvement possible at the load level. 75

5.1 Evaluation process diagram. 79
5.2 4K aliasing problem and Hardware Performance Counter on Intel

Core 2. 80
5.3 The most time-consuming loop in RBgauss. There are 3 different

arrays: AM(2D), and SU(1D) are read-only, PHI(1D) is read and
written. 82

5.4 The most time-consuming loop in RBgauss before and after the array
reshaping optimization. 84

5.5 Speedup achieved on RBgauss with the AM reshaping optimization
on unicore. 84

5.6 Speedup achieved on RBgauss with the AM reshaping optimizations
for 1..4 threads. The gains obtained on unicore scale linearly with
the number of cores in the system. 85

5.7 The most time-consuming quadruply nested loop in EUFLUXm. There
are 4 different arrays: vecx(2D), ompu(3D), and ompl(3D) are read-
only, vecy (2D) is read and written. 85

5.8 The most time-consuming quadruply nested loops in EUFLUXm before
and after loop interchange optimization. 86

5.9 Speedup achieved on EUFLUXm with the loop interchange optimization
on unicore. 86

5.10 Speedup achieved on Dassault applications the loop interchange op-
timizations for 1..4 threads. The gains obtained on unicore scale
linearly with the number of cores in the system. 87

6.1 Addressing the control flow with Decan. 90
6.2 Decan on one thread job. 91

List of Algorithms

1 Maqao Performance Model Algorithm. 42
2 Predecoder Algorithm. 43
3 Decoder Algorithm. 44
4 Reorder-Buffer read Algorithm. 45
5 Decremental Performance Analysis Algorithm. 62

List of Tables

2.1 A comparison between Maqao’s static analysis features and IACA’s
features. 32

2.2 A comparison between Decan features and some dynamic profiling
tools’ features. 32

3.1 Maqao’s static analysis on the svdcmp codelet from Numerical
Recipes. The svdcmp performs a Singular Value Decomposition [85].
In this case the codelets are characterized according to two static
metrics: Ratio− vect = O and FP_per_cycle 6= 0 51

3.2 Maqao’s static analysis on the gaussj codelet from Numerical
Recipes. The gaussj performs a Gauss-Jordan Elimination [85]. The
interesting loops are the ones that have been transformed : execution
ports dispatch different from the original no-unroll loop dispatch. . . 52

3.3 Maqao’s static analysis on the toeplz codelet from Numerical
Recipes. The svdcmp builds Toeplitz matrices [85]. In this case, the
loops with a number of XMM registers above 16 which is the max-
imum number of XMM registers in the Core 2 architecture. That
shows that there is no need to unroll more because of register spilling. 52

5.1 The features targeted in our performance evaluation process and the
tool responsible of each feature. F1: Vectorization / F2: Dispersal
on execution ports / F3: Estimation bound in L1, L2, and RAM /
F4: Cache misses / F5: Load-Store impact / F6: 4K-aliasing / F7:
Memory access patterns. 81

Chapter 1

Introduction

The complexity of modern architectures makes it more and more difficult to un-
derstand the behavior of the programs running on them, and to propose a good
optimization. Furthermore, the compilers applies more and more aggressive opti-
mizations to gain performance, such as loop unrolling, inlining, loop splitting, loop
fusion, and if-conversion. As a result, the compiled code is difficult to understand
and even experts have difficulty to predict which optimizations will give the best
performance. The best solution is a perfect compiler that will be able to apply the
best optimization on a code to have the best performance on a target architecture.
However, this perfect compiler does not exist, and even if it does we will always need
to profile the resulting code to verify the optimization.

With a non-perfect compilers and an increasing complexity of modern proces-
sors, there is a need of some code’s profilers that help the programmers to detect
the problem responsible of the poor performance. With the advent of multicore, all
efforts have been done to profile and optimize applications for multicore platforms:
memory contention, false sharing, etc. Of course, the memory contention and ac-
cessing the memory hierarchy in general are multicore problems that should be kept
in mind. However, we believe that it is only by achieving a reasonable optimization
at the unicore level that a real speedup can be obtained in multicore. This is why,
there is still a need for performance analysis in unicore to improve the multicore.

The code optimization is a process in which several methods of optimization are
applied to improve performance code (more speedup, few use of resources). Before
tackling the suitable optimization, one have to consider the code he is going to
optimize. It is necessary to have an accurate idea of the target code: which data
structures are used and how. This is called, code characterization. The second step
in the code optimization process consists in diagnosing the problem of the program
by identifying the cause of the poor performance. This step is performed with the
help of performance tools, to automatize the process.

Different tools exist to analyze the performance of the programs, some of them
target MPI codes, others based on statistical sampling targets both sequential and
parallel codes. Since the concept of performance is large, there is no specific tool
that solves all the performance problems. Any user who wants to optimize his code
will use a set of tools, since different tools have different strengths.

Finally, the third and last step of the process of optimization consists in prescrib-
ing a solution to solve the problem of poor performance. This solution corresponds
to a good optimization applied to achieve the performance objectives.

1.1 Contributions

In this thesis, we present two different approaches for performance analysis in uni-
core. The first approach is a static analysis tool based on a performance model of
x86 architecture. It tackles the bottlenecks that can appear in the front-end and

2 Chapter 1. Introduction

the back-end of the pipeline. It computes several metrics to quantify the quality of
the code, such as the degree of vectorization of the code, the number of cycles spent
in the execution ports, and an estimation of performance in the different levels of
cache and RAM.

The second contribution of the thesis is a new technique for performance anal-
ysis called Decan, for decremental analysis. It performs on SSE memory access
instructions on the binary code. It patches the binary code by transforming the
memory access instructions with nops to evaluate the impact on performance of
these accesses. This technique allows to deal with load and store instructions and to
have a more precise information about which instruction is responsible of the poor
performance.

Combining these two tools, we proposed a semi-automated methodology for a
better evaluation process. This methodology combines the use of Maqao’s static,
analysis, Decan, and significant hardware performance counters. We applied this
methodology on two real-life HPC applications from RECOM Services and Dassault-
Aviation. We achieved a speedup of 1.4 on the RBgauss routine of the RECOM
application, and a speedup of 2.5 on the EUFLUXm routine of the Dassault application.

1.2 Organization

This dissertation is organized as follows:

• Chapter 2 presents an overview of the different fields addressed by our tools.
It makes an overview of the evolution of the microarchitecture, the memory
hierarchy and presents the existing performance analysis tools.

• Chapter 3 presents Maqao’s static analysis, the first contribution in this
thesis.

• Chapter 4 describes the second contribution, Decan, the decremental perfor-
mance analysis tool.

• Chapter 5 proposes a semi-automated methodology of performance evaluation,
which combines our two tools.

• Finally, a conclusion and perspectives are presented.

Chapter 2

Computer Evolution and
Performance Analysis

2.1 Context

This thesis presents two techniques/tools to evaluate the performance of programs.
The first technique is a static analysis tool, Maqao’s static analysis which is a fast
technique to have first information about the quality of the code. It is based on a
x86 performance model, so it helps to understand better, the behavior of the code
on this microarchitecture. The second tool is Decan, a new approach to profile and
understand memory operations. It targets load and store operations to detect the
impact on performance of these memory accesses.

The process of optimization is not a one step process. Applying an optimization
to a program requires diagnosing performance problems. To define a good optimiza-
tion process for a software running on a target architecture, one should have a good
understanding of: the behavior of the software, the microarchitecture the program
is running on, and the interactions between the two. With the two tools proposed in
this thesis, we target two important parts of the modern architectures: the proces-
sor (ie. microarchitecture) and the memory (since the gap between processor speeds
and memory accesses is growing every year).

Microarchitectures are becoming more and more complex. Some mechanisms
in modern microprocessors are not easy to understand for a programmer, so he
can tune his program to best utilize scarce resources (e.g. bandwidth, functional
units, cache). For example, for vectorization mechanism, it is not clear when the
compiler converts scalar programs into vector programs. Depending on the pro-
gramming language used, it helps the compiler to know when to use vector instruc-
tions. The vectorization mechanism consists in using SIMD instructions such as
MMX/SSE/3DNow! instructions for x86 architectures (Intel [58, 59, 61, 60], and
AMD [20, 17, 18, 22, 21, 19]), and Altivec [57, 56] for Power Architecture.

The complexity of the microarchitectures makes the process of bottleneck de-
tection a tedious problem. They tend to place increasing pressure on programmers
and tools to optimize scientific codes. Numerous tools and techniques exist, but no
single tool is a panacea; instead different tools have different strengths. Most of
these tool perform dynamic profiling on routine level with significant overhead to
have accurate details about the profiled region.

Before presenting the tools, we propose in this chapter to describe the different
fields they address. We presents an overview of the evolution of the complexity of the
microarchitecture (field addressed in Maqao static analysis), the memory hierarchy
and and how memory latencies influence performance (since memory accesses are
addresses in Decan), and an overview of the existing performance analysis tool
with a comparison with our tools.

4 Chapter 2. Computer Evolution and Performance Analysis

2.2 Memory Wall

At the beginning of the computer manufacturing, the different components such as
CPU, memory, network interfaces, were developed together and were well balanced
in their performance. Nowadays, this balance is no longer possible. The CPU
microarchitecture was developed and a lot of efforts were done to optimize this
component and to improve its performance. However the memory did not follow this
progress, for cost reasons, and an important gap [32] appeared between the CPU and
the memory buses performance as shown in Figure 2.1. Indeed, the microprocessors
are now generally clocked at 3GHz while the memory buses are clocked at 1,33GHz.

Figure 2.1: Processor-memory performance gap: starting in the 1980 performance,
the microprocessor and memory performance over the years.

To alleviate this, memory caches are added. Different approaches are proposed
to fully exploit the caches [25]. In the rest of the section, we describe the memory
caches, and cache prefetching.

2.2.1 Caches: implementation and behavior

Figure 2.2: Minimum cache configuration [42].

Caches play the role of buffers between the processor and the memory (ie. RAM).
The concept of caches consists in having a copy of RAM data in the caches, so the
data can be reused without accessing the RAM once again. This reuse consists in
code or data, spatial and temporal locality. This means that in a small period, the

2.2. Memory Wall 5

code or the data has a great chance to be reused. For example, in a loop, the same
code is executed over and over (spatial locality). Or, the same data has a great
chance to be reused in a short period (temporal locality).

The size of the cache is always smaller than RAM. If the working set of a program
is small enough to fit in the cache, so the program’s execution is efficient. However,
in current programs that run multiple processes, each process has its own working
set. In that case, the cache does not store the working set of all the processes. To
deal with the limited cache size, some strategies are needed to know what should be
cached.

Since not all the working set is needed by a program at exactly the same time, one
solution, is to replace the data in the cache. This can be done, when the program is
executing so there will be no delay for the replacement, and the cache appear bigger
than it actually is. This replacement is a kind of prefetching, a strategy that will
be described further.

Figure 2.2, shows a cache configuration like it was in the early cache system.
The cache is connected directly to the CPU core. The cache communicates with
memory through a bus called FSB for front-side bus. Soon after the introduction of
the caches, microarchitecture became more complex. The gap of speed between the
cache and the memory increased and new levels of caches are added. These added
caches are bigger in size and slower than the first level of cache. Figure 2.3 is a
schematic of what the current system look like.

Figure 2.3: 3-level caches configuration [42]. The L1i is the instruction cache while
the L1d is the data cache.

To give an idea of the cost of an access to the cache, we take as an example the
Intel Core 2 and the Intel Nehalem processors. In the Intel Core 2 the cost of a SIMD
load to the first level of cache is 1 clock cycle while it costs up to 1.22 clock cycle
for a SIMD load in the second level of cache. These times do not correspond to cache
latency. They correspond to the troughput, which means in that case, the number
of SIMD loads that can be executed per cycle (1 per cycle in Core 2, L1 cache level).
On the Nehalem, the throughput is the same for the 1st (1 clock cycle) and the 3rd
level (1.22 clock cycle) of caches. The 1st level of cache in both Core 2 and Nehalem
has the same size.

Different techniques are used to make the data stay in the cache as long as

6 Chapter 2. Computer Evolution and Performance Analysis

possible. The most famous technique is the data blocking or tiling. This technique
is applied in many cases [83] for linear algebra kernels. Some attempts have been
made to automatically tile loop nests [27, 88]. Most often, they target regular loops
using the polyhedral model [46, 47].

In multicore processors, all the cores have a copy of almost all the hardware
resources. In each core, the threads share the resources of the processor. Figure 2.4,
shows what a multicore processor looks like. There are two cores, containing two
threads each. The threads share the same first level cache, while each core has its
own first level cache. The cores share the high level caches and the processors (core
+ high level caches), if there is more than one, do not share any caches.

Figure 2.4: Multicore configuration [42]. There are two processors with two cores
each sharing the main memory. Each core has 2 threads that are sharing the first
level cache (instruction and data). Each core has its own first level cache, and the
cores of the processor share the high level caches. The processors do not share any
cache.

2.2.1.1 Miss factors

A cache miss is a failed attempt to read or write data from/to the cache. This
means that the data is not fetched in the cache and should be brought from main
memory: this results in an access with a high latency. We list three kinds of misses:

• Instruction cache read miss: it is a miss which is due to the absence of the
instruction in the instruction cache. This miss results in the most delay. The
instruction needs to be fetched from the main memory.

• Data cache read miss: it is a miss that causes less delay because instructions
that are independent from the read miss can be executed while the data is
brought from main memory.

• Data cache write miss: in this case the write is queued and the process can

2.2. Memory Wall 7

continue until the queue is full. This miss is the one that causes the least
delay.

To decrease the cache miss rate, many analyzes have been done to find the good
combination between, cache size, associativity, block size, and so on. The cache
misses are separated into the three known Cs misses: compulsory, capacity, and
conflict misses.

• Compulsory miss: they are misses caused by the first reference to data.

• Capacity miss: they are misses due to the finite size of the cache.

• Conflict miss: they are misses that can be avoided. They are due to associa-
tivity and replacement policy.

Figure 2.5, shows the cache miss rate versus the cache size for different cache
implementations. The compulsory misses give the insight that there is no need to in-
crease the size of the cache beyond 1MB to increase the performance of the machine
on SPECINTCPU2000. The fully associative cache miss rate is almost representa-
tive of the capacity miss rate, the difference is in the replacement policy which is
a perfect replacement policy for the capacity miss rate and LRU for the simulates
fully associative cache. We see that the capacity miss rate falls between 32K and
64K, this indicates that the benchmark has a working set of roughly 64K. Finally,
the difference between the direct-mapped and fully associative caches corresponds
to the conflict miss rate. This shows that the secondary misses benefit from the
high associativity.

Figure 2.5: Cache miss rate versus cache size in the SPECINTCPU2000 [31, 105].

2.2.1.2 Implementation

The main problem for cache implementors is to find a cache line to store each cell of
main memory. This is not realistic, as we know the working set of actual programs
is larger than the cache size. Moreover, the size of the main memory is up to 1000x
larger than the cache size, for example 4MB for a cache against 4GB for the main
memory.

8 Chapter 2. Computer Evolution and Performance Analysis

Associativity Different implementations to fully exploit the cache have been pro-
posed. Before detailing these implementation, we give a brief description of the
structure of a cache and main memory entries.

Figure 2.6 shows the structure of a cache line entry. The data block contains the
data fetched from the main memory to the cache, and the valid bit is a bit that is
set when the data in the cache entry is valid. The tag contains the value associated
to each cache line (to distinguish all the memory cells that are stored in the same
cache set).

Figure 2.6: The cache line entry structure with the tag, the data block and the valid
bit.

Some cache implementations cache store any memory location in any cache line.
This is called a fully associative cache. The tag of each cache line is compared to the
tag of the memory address requested. If the tags match, then the memory location
is stored. This method of "caching" is very efficient for small caches where the
number of entries is not high. Indeed, in current L2 caches of 4MB, where the size
of the cache line is 64B, there will be 65,536 entries for the cache. Thus the tag of
the requested memory address must be compared to 65,536 entries in few cycles.
However, the fully associative caches are mainly implemented for very small caches
such as the Translation Lookaside Buffer (TLB), where there a few dozen entries.

For bigger size caches, we must restrict the search. The most restrictive way is
to dedicate to each memory location one cache line. This method is called direct
mapping. It is easy to implement. To find a slot in the cache, a very simple hash
function is used. The drawback of this method, is the risk to always choose the same
slot, so the same cache line is often evicted while other cache lines are never used.
The direct mapping can be compared to a parking lot problem, with many students
having permits for the same spot when the other spots have very few permits. In
this case the direct mapping works poorly.

A trade off between the fully associative and the direct mapping can be found.
It is called a set associative cache. It combines the advantages of the two previous
implementations. The tag and data storage are divided into sets. Each tag/data
storage is selected by the address of a cache line. In each set, a direct mapping is
applied, but instead of having one cache line for each set, there are several cache
lines values for the same set. When a request for a memory location is done, then
the tag of all the sets is compared to the requested memory address, which is close
to the behavior of a fully associative cache.

Actually, most of the caches used are set associative. In the Sandy Bridge,
unlike in the Nehalem, the L1 instruction cache is 8-way associative (4-way in the
Nehalem). Figure 2.7 shows the effects of the associativity and the cache size on L2
cache misses.

Figure 2.8, illustrates the 3 implementations of cache described previously.

Multi-processors support In the previous section, we presented cache imple-
mentations in the case of one processor. When it comes to multi-processor architec-
tures a problem in the caches that are not shared appears.

2.2. Memory Wall 9

Figure 2.7: The impact of the cache size and the associativity on L2 cache misses,
on gcc benchmark (cache line = 32 bytes) [42].

Figure 2.8: Fully associative, direct mapping and set associative cache implementa-
tions.

It is costly to provide a direct access to the cache to an extern processor. The
question is when to transfer a needed cache line and how? If the cache line has
been modified by a processor, how will the other processor that needs the cache line
know that the data has changed? This problem is known as cache coherency and
the MESI protocol has been developed to palliate the problem.

The MESI protocol shown in Figure 2.9 is a cache coherency protocol based on
4 states:

1. Modified: the cache line is only present in the current cache and is modified
by the local processor.

2. Exclusive: the cache line is only present in the current cache and not modified
(but known to be modified).

3. Shared: the cache line is not only present in the current cache. It may be
present in another cache’s processor and it not modified.

4. Invalid: the cache line is invalid.

10 Chapter 2. Computer Evolution and Performance Analysis

Figure 2.9: MESI protocol transitions [42].

At the beginning, all cache lines are empty and their state is Invalid. When data
is requested by a processor for writing then the cache changes to Modified. If data
is requested for reading then the cache changes to Shared or Exclusive depending if
the cache line is present in another cache’s processor or not.

If the cache line is Modified, and a reading or writing is requested from the local
processor, then the state does not change. If a remote reading is requested from
another processor, then the local processor send the content of the cache line to the
applicant and change the state to Shared. If a remote writing is requested then the
local processor sends the content of the cache line to the applicant and the state
is changed to Invalid. When the state changes to Shared the content of cache line
is also written in the memory. When a remote write is requested, then the write
operation should be announced to the other processors by an RFO (Request For
Ownership). This operation invalidate all the processors’ cache lines that holds the
written memory line.

If the cache line is Shared, and a local request for reading occurs then nothing
happens. If a local request for write occurs then the state is changed to Modified and
all other copies in other caches are set to Invalid and a RFO is announced. When
a remote reading is requested, nothing happens. If a remote writing is requested
then the state is changed to Invalid and a RFO is announced to invalidate all other
copies.

When the cache line is Exclusive, the behavior is almost the same then is a
Shared case, with one difference: when a remote write is requested there is no need
to announce a RFO, since the local cache is the only cache that stores the target
data.

What we can conclude from the MESI protocol is that the write announcement
with the RFO messages is costly because is requires to pass through the bus. In
case of multicore, the RFO may occur if, for example, a thread migrates from a
processor to another (all cache line should be moved from a processor to another),
or the same cache line is needed by more than one processor.

2.2.1.3 conclusion

In the current modern processors, most of them have a multi-level cache, from the
first to the third level of cache. Most of them target the problem of the cost of
cache/RAM and the execution time. In current research, interest has been focused
on energy efficiency, fault tolerance and other purposes. Wang et al. in [102] present

2.2. Memory Wall 11

a new cache architecture that can simultaneously have low miss rates, short access
times, and is power efficient. They used the CACTI cache simulator [96] to validate
their design.

2.2.2 Cache prefetching

Prefetching is used to hide the latency due to memory accesses. Prefetching can be
triggered by special hardware events and is called Hardware Prefetching or Software
Prefetching if it is requested explicitly by the programmer.

2.2.2.1 Hardware prefetching

The trigger to the CPU that enables the hardware prefetcher is in general a se-
quence of cache misses in a certain pattern. In old implementations of the hardware
prefetcher, only cache miss pattern were recognized and handled. In the modern
processor, not only cache misses trigger a hardware prefetch but also stride patterns
that are then handled appropriately.

The hardware prefetcher is not triggered for every cache misses. This can be very
bad for performance because of the limited bandwidth. This is why the hardware
prefetch is triggered only if at least two sequences of cache misses are needed. A
too aggressive prefetching policy can lead to a waste of memory bandwidth, cache
thrashing, and so on.

Modern processors assign a stream to each cache miss. When a determined
number of streams is obtained then the hardware prefetcher starts.

2.2.2.2 Software prefetching

The advantage of hardware prefetching is that the program does not need to be
modified. However, the drawback of the hardware prefetch is that the access patterns
must be relatively simple to be recognized. In the case of complex patterns, one
solution is to use the software prefetcher.

One method for software prefetching is inserting pragmas/special instructions
into the target code. In x86 and x86-64 microarchitectures, Intel’s convention for
compiler intrinsics to insert these special instructions can be used. For example:

#include <xmmintrin.h>
enum _mm_hint{
_MM_HINT_T0 = 3,
_MM_HINT_T1 = 2,
_MM_HINT_T2 = 1,
_MM_HINT_NTA = 0
};

void _mm_prefetch(void *p,enum _mm_hint h);

The different hints request that the data be fetched to all cache levels or only
to the L2 cache, for example. The details of the hints can be found in the Intel 64
Instruction Manual [60].

The most practical software prefetching techniques proposed are techniques used
inside the compiler [92, 79], so the user-programmer has no need to modify his
program.

12 Chapter 2. Computer Evolution and Performance Analysis

2.2.3 Conclusion

In this section we presented part of the hardware that is generally considered as
performance bottleneck: the memory. We described the implementations of the
caches and the behavior of the cache in the case of misses. With multicore processors
the problem is that, when memory is shared, only one processor can access this
memory, making the other processors stall.

To palliate this problem, the Non-Uniform Memory Access is designed, provid-
ing a separate memory zone for each processor. The problem with NUMA is to keep
the coherency of the data across the shared memory.

The problem of memory is tackled by several research fields. Because of the
existing gap between the memory and the processor performance, the memory is
often considered as a bottleneck. In this thesis, the memory criterion is taken into
account in the decremental analysis tool Decan, presented in Chapter 4.

2.3 Microarchitecture Complexity

In this section, the purpose is not to make a historical of the microprocessors’
architecture. This work has already been done in depth by Hennesy and Patterson
in [54] or Baer [23]. The purpose is to describe a subset of the hardware that
contributes in increasing the performance of a program if its usage is maximized.

The details of the microarchitecture described in this section have been imple-
mented in Maqao for the static analysis. Indeed, Maqao’s static analysis, which
is one of the contributions of this thesis in Chapter 3, implements a detailed perfor-
mance model for the Core 2 architecture. This detailed performance model leads to
accurate performance data.

2.3.1 Instruction pipeline

2.3.1.1 Description

The instruction pipeline is a powerful technique to improve the processor perfor-
mance. The scalar microprocessors are considered as the simplest form as they
perform one operation at a time. Because the amount of computation is very high,
there was a need to speed up the execution of a program. The instruction pipeline
is considered as a solution to overcome this problem. The technique consists in
splitting the process of an instruction into small steps, thus some steps (of different
instructions) can be processed at the same time. Figure 2.10 shows the instruction
pipeline stages:

1. Instruction Fetch (IF)

2. Instruction Decode (ID)

3. Execute (EXE)

4. Memory Access (MEM)

5. Register Write-Back (WB)

When an instruction is processed, it crosses the different stages of the pipeline.
When an instruction I1 is in the decoder stage, an instruction I2 can be fetched.

2.3. Microarchitecture Complexity 13

Figure 2.10: A view of a five-stages pipeline.

Figure 2.11: Instruction pipelining in a 4-stages pipeline. When full, there is a
throughput of one instruction per cycle.

After decoding, I1 is executed and I2 is decoded, then a third instruction I3 can
be fetched at the same time, etc. When each stage of the pipeline is processing
an instruction, the throughput is one instruction processed per cycle. Figure 2.11
illustrates the instruction pipelining.

However, having instructions dependencies prevents from the maximal through-
put of one instruction per cycle. Indeed, if the instruction I2 needs the result of
the instruction I1, then I2 should wait until the result of I1 is written back. This
pending is called a pipeline stall.

In reality, the pipeline is more complex than that. For example, more stages can
be added so the functional units (integer and floating-point) can be pipelined. Also,
depending if the program is memory- or compute-bound more stalls can occur. The
rest of the section explains the different stages added in the modern pipelines, and
how these new stages may cause more stalls.

In the next section, we present the evolution of the pipeline on different archi-
tectures from Intel and AMD and describe the difference in complexity from an
architecture to another on each stage of the pipeline.

14 Chapter 2. Computer Evolution and Performance Analysis

Figure 2.12: Instruction execution in the two pipes in a Pentium 1. An AGI occurred
in the V-pipe because ESI register is modified in an instruction and used to address
memory 3 instructions later. The U-pipe is idle because of the lockstep execution
of the Pentium 1.

2.3.1.2 Instructions pairing

The Pentium 1 processor has two execution units: the U and the V pipes. The U-
pipe executes any instruction while the V-pipe executes only simple instructions [13].
When two instructions execute in parallel in the two pipes, the two instructions are
considered to have been paired. This execution in two pipes can almost divide the
execution time by 2. If the instructions are well ordered in the program to be paired
correctly, this can have a large benefit on the performance. By a good reordering of
instructions, we mean to create pairs of instructions with one simple instruction that
can be executed in the V-pipe and the other one in the U-pipe. This mechanism of
instruction pairing is applied for the integer instructions.

It takes one cycle for the Pentium 1 to calculate an address. If any part of a
register during a cycle is modified, this register can not be used to address memory
during that cycle or the next cycle. This is called AGI: Address Generation Interlock.
Instructions execute in lockstep on the Pentium 1, so if one pipe stalls for a cycle,
making its instruction take one cycle longer, that extends by one cycle the time
until the other pipe can begin its next instruction, as well. Figure 2.12 shows an
example of an AGI/Lockstep stall.

This mechanism of pairing exists in both Pentium 1 and Pentium MMX where
the instructions are executed in the order they appear in the program.

2.3.1.3 Instruction fetch

The instruction fetching is the step of the pipeline where the address of the next
instruction to execute is retrieved from the PC (Program Counter). In the Pentium

2.3. Microarchitecture Complexity 15

II, III, and Pentium Pro architectures, the instructions are fetched in an aligned 16-
bytes block from the cache code into a double buffer that can hold two 16-bytes
blocks. The double buffer allows the decoder to decode instructions that cross the
16-bytes boundary. The code is passed from the double buffer to the decoder in
fetched-blocks of 16 bytes that start at an instruction boundary. If the instruction
length is not available in time, then the fetched-block starts at a 16-bytes boundary.
If the 16-byte fetched-block contains a jump and crosses a 16-bytes boundary, then
the double buffer needs to keep two aligned 16-bytes blocks to generate the fetched-
block. The same is true if in the fetched-block the instruction following the jump,
crosses a 16-bytes boundary. In the worst case, the delay will be of 2 cycles [49].

The Pentium M has the same mechanism of fetching with one improvement:
16-byte boundaries do not cause delays in jumps. So, it is not important to align
subroutine/loop entries. The Core 2 and Nehalem architectures have the same fetch
mechanism than the Pentium M.

2.3.1.4 Instruction decode

The instruction decoder is the stage of the pipeline where the instruction is
decomposed into micro-operations. For example, and instruction such as add
(%eax),%ecx, is an instruction that does two operations, the first consists in loading
the data from the memory ((%eax)), and the second operation is the addition. Each
operation in called micro-operation or micro-instruction. Each micro-operation is
executed in one execution unit. The decoder in the Pentium II, III and Pentium
Pro architecture is decomposed in three sub-decoders: 4-1-1. The first decoder can
handle any instruction of any length and with no more than 4 micro-operations per
cycle. The other two decoders only handle instructions that generate no more than
one uop each and are not longer than 8 bytes. The decoder receives from the fetcher
(ie. instruction length decoder) a fetched-block of 16-bytes. If the fetched-block
contains instructions that fit in the 4-1-1 pattern, then this fetched-block is decoded
in 1 cycle. Otherwise, it takes more than one cycle to decode the block. We should
know that the first instruction of a fetched-block always goes to the first decoder
(4) [49]. The example below illustrate the dispatch in the 4-1-1 decoders:

mov (%esi),%edi -- 1uop
sub %8,%edi -- 1uop
add %eax,(%ecx) -- 2uops
sub %edi,(%ebx) -- 2uops
jle LABEL -- 1uop

The first instruction goes to the first decoder (4). The second instruction goes
to the second decoder (1). The third and fourth instructions will wait until the first
decoder (4) is free. The last instruction goes to the third decoder (1). It takes 3
clock cycles to decode this group of instructions because the 4-1-1 pattern is broken
twice. To optimize the utilization of the pattern 4-1-1, the instructions should be
reorganized to fit the pattern.

add %eax,(%ecx) -- 2uops
mov (%esi),%edi -- 1uop
sub %8,%edi -- 1uop
sub %edi,(%ebx) -- 2uops
jle LABEL -- 1uop

16 Chapter 2. Computer Evolution and Performance Analysis

With this new schedule, the group of instructions is decoded in 2 cycles instead
of 3 cycles.

In the Pentium M, Core 2, and Nehalem architecture, the decoder has a similar
behavior. However in the Core 2 and Nehalem there is one more decoder that
decodes one micro-operation. The pattern in Core 2 and Nehalem is a 4-1-1-1
pattern instead of a 4-1-1 pattern. Moreover, the Pentium M, Core 2, and Nehalem
use a mechanism called Micro-op fusion to increase the throughput of the decoder. In
the Micro-op fusion it is possible to fuse two micro-operations in one micro-operation
so it can go in the decoder that only handles instructions of one micro-operation
[49]. The other advantage of the micro-fusion is that downstream resources such as:
Loops Stream Detector, Reservation Stations, Reorder-Buffer, only needs one slot
for the fused micro-ops.

2.3.1.5 Register Renaming

The register renaming is a technique used to increase the number of instructions that
can be executed in parallel. This technique is used in the Tomasulo Algorithm [97]
and allows to resolve the Write-after-Write and Write-after-Read hazards. In [86],
Qian et al. proposed a two-phases register renaming scheme used in implementing
an x86-compliant processor.

The register renaming in the Pentium II, III, and Pentium Pro architectures, is
controlled by the Register Alias Table (RAT). The RAT is a unit that maps the
architectural registers to the physical registers. The maximum throughput of the
RAT is 3 micro-operations per clock cycle. It means that the RAT can rename up
to 3 registers per clock cycle. In Core 2, Nehalem, and Sandy Bridge the register
renaming is also controlled by the RAT but its throughput is increased to 4 micro-
operations per clock cycle [49].

Data Hazards When different instructions uses a location for an operand, by
reading it or writing it, executing these instructions in a different order may lead to
some hazards such as:

• Read-after-Write: when a register is read it returns the value of the last
write in the program. These instructions must be executed in order.

• Write-after-Write: when a register is written by successive instructions, the
last value of the register must the one written during the last write.

• Write-after-Read: a read of a register must return the last value written in
the register before the read.

2.3.1.6 Reorder-Buffer-read

The Reorder-Buffer-read stage is the stage of the pipeline where the values of the
renamed registers are stored. In the Pentium II, III, and Pentium Pro, the RoB-
read has 2 input registers and 2 output registers. A register can be read from the
RoB-read without stall if it has been modified (ie. written) within 3 clock cycles.
If the register is written in more than 3 clock cycles, then the register is read from
the Permanent Register File and a stall may occur because the register file has only
2 read ports [49]. The Permanent Register File is an array of processor registers

2.3. Microarchitecture Complexity 17

that can be read through dedicated ports and written through other dedicated ports
[45, 14].

In Pentium M, Core 2, and Nehalem, the same problem if the number of registers
to read happens. However, the number of read ports in the register file to read
instructions’ operands has increased from 2 to 3 ports.

In Sandy Bridge it seem like the number of read ports in the register file has
been increased but it is no longer a bottleneck.

2.3.1.7 Retirement

The retirement station is the stage of the pipeline where the temporary registers
used for register renaming are written in the Permanent Register File. At this stage
of the pipeline, the instructions must retire in order. It means that if an instruction
I1 is not ready to be retired, none of the instructions following this I1 can be retired
before it. In Pentium II, III, and Pentium Pro the retirement can handle 3 micro-
operations per clock cycle. Also a taken jump can only be retired in the first of the
three slots of the retirement station. This is significant in a small loop where the
number of micro-operations in the loop is not divisible by three. That means that
if the last instruction in a taken jump, then the two other slots of the retirement
station will be idle [49].

In Core 2, Nehalem, and Sandy Bridge architectures , the retirement station is
not a bottleneck anymore.

2.3.2 Out-of-order execution

In the last 6 generations of microprocessors, beginning with the Pentium Pro, the
mechanism of Out-of-Order is designed. The concept of Out-of-Order is that when
an instruction is not ready to be executed because its operands are not ready yet,
then the microprocessor handles later instructions which are ready and which don’t
have any dependency with the delayed instruction. Instead, in the in-order execu-
tion, if the operands of an instruction are not ready yet, then the processor stalls
until they are available. The Intel Atom processor is in-order.

Typically, two instructions such as an addition and a multiplication, can be
executed at the same time if both are independent of the other. Because the addition
and the multiplications units are separated, these two operations can be executed in
parallel. However, because there is only one multiplication unit, one cannot perform
two multiplications at the same time even if they are independent. Figure 2.13 shows
an example of two instructions that can be executed in parallel.

In all the microprocessors where the Out-of-Order is designed, the instructions
are decomposed into micro-instructions (or micro-operations). For example, in the
following instruction that does an integer addition: add (%rbx),rax, there is one
micro-operation to read the data from the memory at the address %rbx and another
one to do the addition with the register %rax. To increase the throughput, the
mechanism of register renaming, explained Section 2.3.1.5, is used. It allows to
break some false dependencies to increase the number of instructions that can be
executed in parallel.

Everything in these microprocessors is fully pipelined, so every cycle a new
instruction can be launched, if no stalls occur and no dependency exists.

In the Pentium II, III, and Pentium Pro architectures, the RoB can hold up to
40 micro-operations and 40 temporary registers. The reservation station holds up

18 Chapter 2. Computer Evolution and Performance Analysis

Figure 2.13: A couple of instructions that can be executed in parallel if they are
independent.

to 20 micro-operations. After the Rob, the micro-operation waits in the reservation
station and waits until its operand are ready. When the input data is ready, the
instruction is executed. This make the process of Out-of-Order execution possible.

Some operations cannot be executed out-of-order. For example, if a read to an
address is executed before a write to it, that is programmatically before the read,
then an error is detected when the write computes the address and the read should
be re-done.

Figure 2.14 show in the Pentium II, III, and Pentium Pro architectures that
there are 5 execution units clustered around 5 ports:

• P0-P1: dedicated to arithmetic and logic operations and simple mov instruc-
tions.

• P1: handles the jump instructions.

• P2: dedicated to memory read.

• P3: dedicated to address computation for memory write.

• P4: dedicated to all memory writes.

Figure 2.14: The execution units in the Pentium II, III, and Pentium Pro.

2.3. Microarchitecture Complexity 19

Each execution port receives one micro-operation per clock cycle, but the
throughput cannot exceed 3 micro-operations per cycle because of the limit of the
RAT and the retirement station. Some micro-operations take more than one cycle
to execute, such as floating-point (fp) addition and multiplication, but the corre-
sponding execution units are fully pipelined. That means that the execution unit
can receive one fp instruction per cycle. Some instructions such as a division, are
not pipelined at all. If there are 2 divisions successively in a code, the second one
waits until the first is completely executed [49].

In the Pentium M, there are also 5 execution units. The throughput can achieve
5 micro-operations per cycle because two fused micro-operations can be considered
as a single unfused one. So, 3 fused micro-operations can be considered as 5 unfused
micro-operations.

In Core 2 and Nehalem, as shown in Figure 2.15 there are 6 execution units
that can have a throughput of 6 micro-operations. All ports in Core 2 and Nehalem
support the 128 bits vectors:

• P0-P1-P5: dedicated to arithmetic and logic operations and jumps.

• P2: dedicated for memory read.

• P3-P4: dedicated for address computation and memory write.

Figure 2.15: The execution units in the Core2 and Nehalem architectures.

In the Sandy Bridge, all ports support the 256 bits vectors. There are 6 execution
units but the ports are clustered differently than in the Core 2 as shown in Figure
2.16:

• P0-P1-P5: dedicated to arithmetic and logic operations and jumps.

• P2-P3: both of them are dedicated for memory read and address computation
.

• P4: dedicated for all memory writes.

20 Chapter 2. Computer Evolution and Performance Analysis

Figure 2.16: The execution units in Sandy Bridge architecture.

2.3.3 Branch prediction

In the latest generation of microprocessors, everything is pipelined. This allows the
microprocessors, to handle several operations at the same time. When an instruction
I1 is executed, an instruction I2 is fetched and decoded at the same time. The main
problem with pipelining is branches. When there is a conditional jump in a code,
it means that there are 2 possibilities. However, the conditional jump allows the
instruction stream to go in just one direction. The microprocessor does not know
which flow to feed into the pipeline. If there is one pipeline, and if the wrong flow
is taken then the pipeline needs to be flushed and a big amount of time is wasted.

Different implementations of the branch prediction are known such as the sat-
urating counters, or the two-level adaptive prediction [107, 43]. In [38] Alba et al.
present a path-based loop predictor that allows to unroll loop iterations using a
hardware mechanism. There is also the Neural Branch prediction, proposed the
first time by Lucian N. Vintan [101] and improved in [39, 65]. Other researches are
done on the Neural Network prediction [67, 16].

2.3.4 Loop Stream Detection

The point of this buffer is to, detect when the processor is executing a loop, stop
predicting branches (potentially mis-predict the last branch), and stream the in-
structions out of the LSD.

In Core 2 micrarchitecture, the LSD is situated between the fetch and the decoder
and is able to hold 18 instructions. In that case (a loop of 18 instructions), the fetch
and branch prediction are disabled. In Nehalem, the LSD is located after the decoder
and is able to handle up to 28 micro-operations. The Sandy Bridge eliminates the
LSD in favor of a uop-cache.

2.3.5 Conclusion

In this section we presented a description of the last generation of microprocessors.
From the Pentium Pro to the Sandy Bridge we see the evolution in complexity of
the microarchitectures (ie. longer pipelines, complex mechanisms such as the out-
of-order, etc). This increasing complexity, augments the percentage of bottlenecks,

2.4. Compiler impact 21

and it becomes more difficult to pinpoint the real performance problems of a code
running in such microarchitecture.

With the increasing complexity of microarchitectures and memory, it becomes
difficult to detect which part of a program causes poor performance. For that reason,
several tools to analyze the performance of a code have been developed to help the
programmer optimize his code. Some of them perform on source code, others on
binary. Some of them have a big overhead, others negligible overhead but with less
accuracy.

The next section describes briefly the impact of the compiler on the performance
evaluation and why it is better to focus on the binary. After that, we make an
overview of the existing performance analysis tools.

2.4 Compiler impact

The compiler transforms the source code written in a programming language to
a binary code that can be executed on a target platform. This transformations
involves several optimizations that the current version of compiler can apply. This
transformation or tuning has the purpose to reduce the execution time of the binary.
These tuning is generally applied on loops, but not only. We focus on loops, because
in HPC codes, they are the most-time consuming region.

Analyze the performance of a code in source level is the easiest way to do, be-
cause it is simple to insert probes for instrumentation in a target region. However,
when the instrumented code is compiled, we do not control the optimizations ap-
plied by the compiler and which implies a false interpretation of the results of the
instrumentation.

To avoid the compiler-dependency, we focused in the tools presented in this
thesis on the binary code. At binary level, we are compiler-independent, and the
binary transformations applied by the tools to evaluate the performance are not
polluted by the compiler.

2.5 Performance Analysis Tools

2.5.1 Introduction

In this section, we make a brief overview of existing performance analysis tools. We
describe the characterization of each, what is the focus if the tool and the results
obtained with the tool. We present type of different tools, some of them target
loops, others target functions. Some of them perform static analysis and others
dynamic profiling.

2.5.2 Static profiling

The static profiling is considered as the first step in the process of performance
evaluation. It is a fast process that abstracts the dynamic phenomena. It does not
take into account the semantic of the code, since it does not execute the target code
and it does not consider the input dataset. One of the tools presented in this thesis
is Maqao’s static analysis. The following section presents another static analysis
tool proposed by Intel.

22 Chapter 2. Computer Evolution and Performance Analysis

2.5.2.1 IACA

Introduction IACA (Intel Architecture Code Analyzer) [99] allows the analysis
for Intel Advanced Vector eXtension and the previous sets of instructions. It allows
to identify the link between the kernel instructions with the processor execution
ports. It gives the number of cycles spent by each instruction in its corresponding
execution port. It performs a static analysis of the latency cycle counts and detects
the critical path.

Analysis IACA is a command-line tool with ASCII output. It handles a single
code section that is marked for analysis within an executable, a shared library, or an
object file. The tool is a static tool, it sees the code as a one block of instructions,
and does not follow branches. To evaluate a loop using IACA, some IACA macros
should be placed in the code, as follows:

while (condition)
{

IACA_START
<loop body>

}
IACA_END

In that case, by placing the first macro at the beginning of the loop and the
second one after the end of the loop, it skips the initialization of the loop and keeps
the loop branch.

Figure 2.17 below shows the report summary of the IACA analysis. It contains:

• The total throughput counted in cycles.

• The bottleneck that limits the throughput.

• The total number of micro-operations.

• The data dependency latency (the time in cycles that takes to execute the
data dependency critical path).

• The performance latency (the time in cycles that takes to execute the perfor-
mance critical path).

In the IACA analysis report, there is a detailed part (Figure 2.18) the gives and
analysis information about each instruction:

Conclusion IACA is a performance evaluation tool that performs static analysis.
It is based on modelisation of the performance of the Intel Advanced Vector Exten-
sions. It also support the Nehalem. IACA performs a static analysis on a section of
code and gives information related to the bottleneck in case of L1 data. Comparing
to our Maqao’s static analysis, IACA does not perform on the loop level because
it does not detect loops. Moreover, it does not give performance estimations in the
memory/cache levels up to L1. More details about what Maqao’s static analysis
are given in Chapter 3.

2.5. Performance Analysis Tools 23

Figure 2.17: IACA report summary [99].

Figure 2.18: IACA detailed report [99].

2.5.3 Dynamic profiling

Dynamic analysis involves the testing and evaluation of a program based on execu-
tion. Some dynamic profiling tools perform on source code, others on binary code.
Some of them are accurate with a big overhead, others have a negligible overhead
but with less details on the profiled region.

In this section we give an overview of the existing dynamic analysis tools, giving
information on which code region they perform, how they perform and the time
cost.

2.5.3.1 PerfExpert

Introduction PerfExpert [30] is a performance analysis tool that automatically
identifies and characterizes intrachip and intranode performance bottleneck, and
also suggests solutions to reduce the impact of performance bottlenecks.

Figure 2.19 shows a comparison between two workflows. A typical optimization
process that uses a performance evaluation in which only the measurements are
automated, and the PerfExpert workflow. In generic profiling tools, an iterative

24 Chapter 2. Computer Evolution and Performance Analysis

process is followed involving multiple stages. The process is generally conducted
manually and the decision making is left to the user performance evaluation and
system knowledge. In contrast, most of these stages are automated in PerfExpert,
such as the measurement and bottleneck detection.

Figure 2.19: Profiling and optimization workflow with generic measurement tools
(left) and with PerfExpert (right) [30].

PerfExpert combines a user interface with an analysis engine that detects bot-
tlenecks in cores, sockets and nodes on loops and routines. PerfExpert employs
the existing measurement tool HPCToolkit [73] to execute a structured sequence of
performance counter measurements.

PerfExpert automatically evaluates the core, chip, and node performance. It
determines which performance counters to use, analyzes the results, detects potential
bottlenecks, and gives some hints for optimization. It presents the LCPI for Local
cycle-per-instruction metric that combines performance counter measurements with
architectural parameters to make the measurements comparable.

PerfExpert metrics The most important metric computed by PerfExpert is the
LCPI for Local Cycle Per Instruction. PerfExpert computes the LCPI for each loop
and routine and also an upper bound of the latency caused by the measured LCPI
contribution for the six following categories: data memory accesses, instruction
memory accesses, floating-point operations, branches, data Translation Lookaside
Buffer (TLB) accesses, and instruction TLB accesses.

Benefit of the metrics The performance metrics of PerfExpert has the following
benefits and abilities:

1. PerfExpert performance metric can combine, for example, the information
about the hits and the misses for every cache level, into a single metric: data

2.5. Performance Analysis Tools 25

access LCPI. This reduces the amount of output and summarizes PerfExpert
results.

2. PerfExpert metrics can be refined if there are new performance counters avail-
able, such as counters for the shared L3 cache. This refinement has a cost.
Because to have a new metric, PerfExpert needs a new hardware counter, this
increases the number of runs to do to collect all the metrics because.

3. PerfExpert is extensible for different CPU generation and thus for new in-
structions and events related to these instructions.

The metrics proposed in PerfExpert are based on hardware counters. It uses HPC-
Toolkit to execute a sequence of performance counter measurements. HPCToolkit
uses a statistical sampling of hardware performance counters. The drawback of
sampling is that it deal with several instructions in flight which leads to unable to
assign a cost to the right instruction.

Output and optimization PerfExpert generates an output for each routine and
loop. Figure 2.20 shows the output for a matrix-matrix multiplication. The first
line of the output shows the name of the measurement file and its runtime. The end
of the output corresponds to the performance evaluation.

For each routine and loop, PerfExpert lists the name and the percentage of the
total runtime that the routine/loop represents. This is followed by the performance
evaluation. The length of the ">" shows how bad/great are the performance. A lot
of ">" show bad performance. We can see that the overall performance evaluation
is problematic in the matrix-matrix multiplication. The rest of the assessment is the
LCPI for each of the six categories: data memory access, instruction memory access,
floating-point instructions, branch instructions, data TLB access, and instruction
TLB access.

Figure 2.20: PerfExpert output for matrix-matrix multiplication [30].

We can see that for the matrix-matrix multiplication, the instruction memory
and TLB accesses and the branch instructions are not problematic. However, the
data miss in the cache and TLB as well as floating-point instructions are evaluated
as problematic.

PerfExpert can also generate a combined output between two inputs. For ex-
ample an input with one thread per chip and another input with four threads per
chip. Figure 2.21 shows the output for DGELASTIC, a global earthquake simulation
code based on the MANGLL [29] library with these two inputs.

PerfExpert also provides in the output, the path to proposed optimizations.
They are accessible through a web page, that provides classic code transformations
and compiler flags for each assessment.

26 Chapter 2. Computer Evolution and Performance Analysis

Figure 2.21: PerfExpert output for DGELASTIC correlating two runs [30].

Figure 2.22: Simplified list of optimizations with examples [30].

Figure 2.22, shows the examples of code transformations in case the floating-
point instructions are the problem, and Figure 2.23, shows the code optimizations
proposed when the data access is the problem.

Figure 2.23: Simplified list of optimizations without examples [30].

Conclusion PerfExpert is a tool for performance evaluation that uses user inter-
face to give some hints for optimization to the tool’s user. PerfExpert is based on
hardware performance counter measurements using HPCToolkit. When the hard-
ware counter measurements can be useful in routine level, in loop and instruction
level it is different. Indeed, the statistical sampling used to collect information from
the hardware counters, is not precise when comes to instruction level. It deals with
several instructions in flight. Moreover, to increase the number of metrics in Perf-
Expert, there is a need to measure more hardware counters. In the Core i7, there
are up to 1200 hardware counters and getting measurements from them requires a
great number of runs.

2.5. Performance Analysis Tools 27

Likwid (Like I knew what I am doing) [12] is a project that contributes to use
command line tools for Linux to support programmers in developing high perfor-
mance multi threaded programs. It contains several tools as Likwid topology, Likwid
bench, and Likwid perfCtr.

While there are already a number of tools to measure hardware performance
counters (as VTune or PerfExpert) a simple lightweight command line tool was still
missing. There are two ways to use Likwid perfCtr: from outside as a wrapper
to the target application and without changing the source code. Or with code
markers inside the source in combination with the wrapper to configure the events
to measure.

Whether we want to perform a fine-grained analysis at loop and instruction level,
the hardware performance counter measurements with statistical sampling seems to
have limitations (overhead, accuracy at instruction level). They can be used as a
first step to detect the most time-consuming function then let more fine-grained
tools profile the loop and the instruction levels.

2.5.3.2 TAU

TAU Performance System [90, 89] is a portable profiling and tracing framework for
performance analysis of parallel programs written in Fortran, C, C++, Java, Python.
The TAU framework architecture is organized into three layers: instrumentation,
measurement, and analysis. Within each layer there are multiple modules and they
can be configured in a flexible manner under user control.

Instrumentation TAU supports a flexible instrumentation model that allows the
user to insert performance instrumentation calling the TAU measurement API at
different stages such as, multiple levels of program code representation, transfor-
mation, compilation, and execution. The API also provides selection of profiling
groups for organizing and controlling instrumentation.

Figure 2.24: Architecture of TAU Performance System. Analysis and Visualization
[90].

TAU (Tuning and Analysis Utilities) is capable of gathering performance in-
formation through instrumentation of several locations: functions, methods, basic

28 Chapter 2. Computer Evolution and Performance Analysis

blocks, and statements. All C++ language features are supported including tem-
plates and namespaces.

The instrumentation can be inserted in the source code using an automatic in-
strumentor tool based on the Program Database Toolkit (PDT), dynamically using
DyninstAPI, at runtime in the Java virtual machine, or manually using the instru-
mentation API.

PDT [69] is used to parse the source code and to determine the semantic con-
structs to instrument. Figure 2.25 shows the purpose of PDT. Dyninst [3, 28] is used
to instrument dynamically the binary (ie. the executable) and permits to insert code
snippets for instrumentation.

Figure 2.25: Program Database Toolkit PDT [90].

Visualization TAU’s profile visualization tool, ParaProf, provides graphical dis-
plays of all the performance analysis results, in aggregate and single node/contex-
t/thread forms. The user can quickly identify sources of performance bottlenecks in
the application using the graphical interface. Figure 2.26 shows the ParaProf design.
Moreover, TAU can generate event traces that are displayed with the Vampir [11],
Paraver [84] or JumpShot trace visualization tools.

Figure 2.26: ParaProf Architecture [90].

Conclusion The TAU framework addresses the performance problems at three
levels: the instrumentation, the measurement, and the analysis. It provides the
instrumentation’s at different levels, and it performs tracing on parallel programs. It
allows an interactive performance analysis and data management. TAU framework

2.5. Performance Analysis Tools 29

is the product of many years (20 years) of development and it is available on HPC
platforms and supports mots of the parallel programming methodologies. However,
when goes to loop profiling, TAU is more grosgrain. It does not detect loops, and
actually to instrument loops, we need to insert some probes explicitly in the source
code. TAU can be used as a first step in a performance analysis process, to detect
the most executed routine.

Other tools for parallel applications exit such as: KOJAK [75], aKit for Objective
Judgment and Knowledge-based Detection of Performance Bottlenecks, Paradyn [74],
a performance measurement tool for parallel and distributed program, based on
Dyninst [3]. Parallel Performance Wizard [95], is a performance analysis system for
PGAS [8] and MPI application analysis.

Active Harmony [36, 33] is an automated runtime tuning system. It requires
adaptation of the application and is mostly concerned with distributed resource
environments.

Acumem AG [1] sells the commercial products ThreadSpotter (multithreaded
applications) and SlowSpotter (singlethreaded applications), which capture infor-
mation about data access patterns and offer advice on related losses, specifically
latency exposed due to poor locality, competition for bandwidth, and false sharing.
SlowSpotter and ThreadSpotter also recommend possible optimizations.

2.5.3.3 LoopProf-LoopSampler

Introduction Moseley et al. proposed in [76] the concept of loop-centric profiling
to give the programmer a more complete view of where time is spent in a program.
This concept is based on loop profiling which can be performed by two approaches.
An instrumentation-based approach that gathers interesting information about the
loop behavior performed with LoopProf. It uses a dynamic stack-based algorithm
to detect and account for loops. The second approach is a sampling approach with
LoopSampler that achieves similar results than LoopProf with negligible overhead.

LoopProf LoopProf algorithm, was presented the first time in [77]. It is based
on the Pin [71] binary instrumentation. That means that LoopProf works transpar-
ently on different architectures binaries (e.g.,Intel ARM, IA32, EM64T, and Itanium
architectures).

LoopProf is based on binary instrumentation and is compiler independent. It
does not assume a known Control Flow Graph. To detect loops, LoopProf bases
itself on the Pin definition of a BBL (ie. Basic Block). To discover loops, LoopProf
traces the BBLs during the execution, and a stack of BBLs is kept to represent the
execution path. Each time a BBL is encountered, the BBL is pushed on the stack.
If a BBL has already been encountered, then it will be marked as a head of a loop.

To avoid detecting recursion with the LoopProf, the tool keeps track of the
function call stack as well and the detection of loops is limited to the BBLs of the
same frame.

Concerning the instruction accounting, this is done at each end of an iteration
of the loop before the BBL is popped off.

In case of multithreaded programs, LoopProf maintains a separate context for
each thread at runtime, and, at the end of the execution, per-thread and aggregate
statistics are reported.

30 Chapter 2. Computer Evolution and Performance Analysis

This approach of loop detection (ie LoopProf), because it is compiler indepen-
dent, has some limitations such as an overhead of over 70 times slower than the
original execution.

LoopSampler LoopSampler, like LoopProf, also uses the Pin runtime. However,
instead of using the dynamic instrumentation, it uses Pin’s "probes" to run an
application and takes control of the application only when certain events occur.

LoopSampler periodically interrupts the application and reads the call stack to
determine which function or loop is active. Loop Sampler needs a periodic interrupt
to read the contents of the call stack. One solution consists in implementing it
directly in the kernel, but this would not be portable. A second approach consists
in using the Unix function, setitimer.

When an application is initialized, LoopSampler registers a signal handler for
the specified signal. Then, the signal is sent back at a specific frequency.

When an application is running, LoopSampler registers a callback with Pin to be
notified when a new binary image is loaded. Each time, a new image is loaded, this
binary image is parsed, a partial Control Flow Graph is built, and loops are detected
using a traditional dominator analysis (unlike LoopProf that has no knowledge of
the CFG).

LoopSampler is good at identifying hot outer loops, but lacks some of the detailed
information that the, slower LoopProf offers.

Results on SPEC Both LoopProf and LoopSampler are tested on a set of the
SPEC2000 benchmarks [93]. Figure 2.27, shows the overhead of LoopProf when
performed on the SPEC2000, comparing to three cases: native run, Pin running the
program without instrumentation and a basic block counting Pintool. According to
the author, as most of programs do not require iterative profiling, the overhead of
LoopProf is reasonable for users that want more details about the loops.

Figure 2.27: The runtime overhead of the LoopProf tool when compared to applica-
tions run natively, executed with no instrumentation under Pin, and instrumented
by the BblCount Pintool [76].

2.5. Performance Analysis Tools 31

Conclusion Loops are common target for parallelization but without enough in-
formation about the loop behavior, it would be difficult to know which loop to
parallelize. LoopProf and LoopSampler are two techniques to collect the most infor-
mation about the loop behavior to make easier the choice of which loop to parallelize.
The instrumentation-based profiling performed with LoopProf, gives a lot of details
about the loops but is limited because of an overhead of over 70 times slower then
the original execution. This overhead can be avoided while using LoopSampler but
with a less detailed information about the loops. The user should make a tradeoff
between execution time and accuracy.

Another known tool for instrumentation, Valgrind [10]. It is an instrumen-
tation framework for building dynamic analysis tools. Valgrind uses just-in-time
compilation to enable dynamic instrumentation. When using Valgrind, the original
instructions never run on the host processor. Instead, they are converted to an
intermediate representation so that other tools can easily and directly manipulate
them, and then is recompiled to the target architecture. Valgrind includes several
sub-tools, including a memory error detector, cache profiler, heap profiler, and more.
Cachegrind is the cache profiler. It is based on the simulation of configurable L1I,
L1D and L2 caches. It identifies the number of cache misses for each line of the
source code, with per-function, per-module and whole-program summaries.

Since LoopProf, LoopSample and Valgrind perform on binary codes, another tool
on which the two first tools are based on: Pin. It is a tool for dynamic instrumenta-
tion of programs. It does not rewrite the code, it injects code so the application can
keep on working. This method of instrumentation allows to avoid alteration of the
semantic of the code. However, injecting code in flight, has a significant overhead
noticed in the instrumentation-based tool, LoopProf.

2.5.3.4 VTune

VTune Performance Analyzer [4] is a tool developed by Intel also based on sampling.
It runs on x86 architectures and allows a programmer to profile code and extract
various performance data about the code’s behavior. VTune operates in three main
modes: event-based sampling, counter monitoring and call-graph profiling. Event-
based sampling is a popular, fast and transparent mode to analyze a program using
performance counters. In this mode, the VTune analyzer collects data from the
processor using regular timer interrupts. These interrupts are issued when a thresh-
old of events is reached (e.g., instructions retired). This number depends on the
sampling rate specific to the hardware event and determines the analysis’ precision.

2.5.3.5 PTU

Performance Tuning Utility [15] is an Intel tool developed to target some traditional
features such as identifying the hottest modules and functions in a whole applica-
tion, tracking call sequences. PTU also offers the processor hardware counters for
in-depth analysis of the memory system and architectural tuning. PTU also asso-
ciates performance issues with the source code. If no symbol sources for an analyzed
application are found, PTU represents data with basic block granularity and pro-
vides a graph of the function execution flow (control flow graph) to navigate the
disassembly.

32 Chapter 2. Computer Evolution and Performance Analysis

Target Code Granularity Vectorization Front- Back-end Perf. Estimation Semantic Overhead GUI
Maqao Binary Loop + + + - + +
IACA Source Marked code section - + - - + -

Table 2.1: A comparison between Maqao’s static analysis features and IACA’s
features.

Target Code Granularity Loads/Stores Cache misses Semantic Overhead GUI
Decan Binary Loop/Instruction + - - + -

PerfExpert Binary Function/Loop - + + - -
VTune Binary Function/Loop - + + - +

LoopProf Binary Loop - - + - -
Pin Binary Function/Loop - - + - -

Table 2.2: A comparison between Decan features and some dynamic profiling tools’
features.

2.6 Comparison of tools

In this section we gather the tools performing the same analysis in a table to make
a comparison with our tools developed in this thesis.

Table 2.1 makes a comparison between Maqao’s static analysis and the Intel
static analysis tool IACA. The advantage of Maqao is that it performs on loop level
on binary codes. There is no need to change the source code to extract performance
data. Moreover, Maqao’s static analysis gives information about the degree of
vectorization of the loop, which is an important data, since the vectorization is a
special case of parallelism. IACA has an ASCII output when Maqao is based on
web interface. However, Maqao can be used in command line for scripting for
expert users. Both IACA and Maqao are static tools, they do not consider the
dataset input, thus the semantic.

Table 2.2 make a comparison between Decan, our decremental analysis tool
and some of the dynamic analysis tools described previously. The table shows that
there are no tools which are focusing on load/store instruction level. Moreover,
we can notice that Decan does not have overhead comparing to others tool based
on statistical sampling or dynamic instrumentation. Even if Decan alterates the
semantic of the code, it is all about gathering more performance data. Decan is
a command line tool, that can be scripted in case of a big amount of binaries to
analyze.

This comparison shows that there are many useful performance tools that target
different sides of the performance analysis. Our tools Maqao’s static analysis and
Decan are two tools that bring more new concepts for more information about the
program behavior.

Out tools are not considered as a panacea, they are additional tools that can
give additional performance information to apply the best optimization.

2.7 Conclusion

In this chapter we showed how the increasing complexity of the microarchitecture
and the memory leads to about more complex and dedicated performance analysis
tools.

The purpose of all these performance evaluation tools is to detect where, in a
code, is the bottleneck. Such a bottleneck, can be anything in the code: memory

2.7. Conclusion 33

saturation, vectorization, bad memory pattern access, branch misses, etc. Numer-
ous tools and techniques exist, but no single tool is a panacea; instead, different
tools have different strengths. Therefore, an assortment of performance tuning util-
ities and strategies are necessary to best utilize scarce resources (e.g., bandwidth,
functional units, cache).

The next chapters present the performance analysis tools developed during my
thesis. The first one, is Maqao static analysis, a performance tool the performs on
binary and allows to predict the performance of a code, on Core2 architecture. It
is based on the performance model of the Core 2 architecture and gives information
about the quality of the code. The second tool, Decan, is a new approach to
performance evaluation, that also performs on binary, and allows to give the impact
on performance of the memory accesses to pinpoint the delinquent instruction.

Chapter 3

MAQAO Static Analysis Tool

3.1 Introduction

Modern processors rely on many complex hardware mechanisms in order to reach
high levels of performance. In particular, the use of the levels of parallelism and
the appropriate use of the memory hierarchy to hide large memory latencies are
both required to obtain the full computing capacity of processors. This road to high
performance is paved with many complex compiler optimizations. It uses, according
to the code, prefetching mechanisms, vectorization, loop transformations for better
cache usage or data layout restructuring. While many optimizing compilers are able
to perform all these transformations, they have a poor knowledge of the applica-
tion context and must be conservative in their transformations. Failing to find the
best optimization sequence for a given application code, leads compiler to generate
programs with poor performance, or with inappropriate code.

The performance tuning process therefore guides the compiler, through prag-
mas, compilation flags, or source to source restructuring, to generate a better code.
Many approaches to performance tuning have been proposed, getting feedback from
the application either by collecting execution traces through instrumentation (with
Dyninst [3] or Pin [9] for single processors, with Scalasca [106] for multi-node sys-
tems) or hardware counters values (such as Intel Vtune [4] or PTU [15] for instance).
Hardware counter-based techniques show how the architecture behaves with the con-
sidered code and input set. However, it is difficult to make the connection between
hardware event counts and source code, since both source code and compiler op-
timizations have an impact on the resulting hardware events. Moreover, there is
no direct link between hardware counters and the quality of the compiler generated
code. To have feedback from the compilation process, it is, generally, necessary to
analyze performance from the assembly generated code.

In this chapter, we describe how Maqao [41] (Modular Assembly Quality Ana-
lyzer and Optimizer) handles static performance analysis on real-life programs. Our
target architecture is the Core2, but the tool can be easily retargeted to other x86
architectures essentially by changing the performance model used. As Maqao has a
plugin construction, targeting other architectures requires modifying the concerned
plugins: an earlier version of Maqao targeted IA64 architectures which are very
different from X86. The static performance evaluation provides hints on how to
improve the compilation process, and assess the amount of performance that could
be obtained through optimization. This estimate is performed on the sequential
codes (number of threads equal to 1). Improving unicore performance (both in the
sequential and the parallel part of the programs) contributes to improving global
performance and efficiency of the code. We show in particular how static perfor-
mance evaluation is achieved on the Core 2 architecture.

This chapter is organized as follows: Section 3.2 gives an overview of the Maqao
framework. Section 3.3 describes how a target code is restructured to be analyzed.

36 Chapter 3. MAQAO Static Analysis Tool

Section 3.4 presents the performance model implemented. Section 3.5 applies the
Maqao’s static analysis on the Numerical Recipes. Finally, Section 3.6 applies the
Maqao’s static analysis to real-life applications.

3.2 Maqao Framework

Maqao, a Modular Assembly Quality Analyzer and Optimizer, is a tool for ana-
lyzing and optimizing assembly code. Its principles and its general organization are
fairly generic and are capable of supporting a large number of target processors and
compilers. At this point, Maqao supports the Itanium (IA64) [55] and the Pentium
(x86) [61] architectures, with ICC, the Intel C Compiler [62],IFORT, the Intel Fortran
Compiler [62], and the GCC compiler [50].

Maqao handles performance analysis and memory tracing for OpenMP pro-
grams. It combines static analysis of compiler-generated binary code with the anal-
ysis of execution traces and binary instrumentation. Static performance evaluation
provides hints on how to improve the compilation process, and assess the amount
of performance that could be obtained through optimization. This static analysis
corresponds to the design of the performance model of the Core 2 architecture. It
is performed on sequential programs (both in the sequential and the parallel part of
the programs). Focusing on the unicore performance, and improving the sequential
performance has an impact on the global performance of a program. For instance,
dynamic thread-wise traces, in particular compact memory traces, show how to im-
prove interactions between threads, and detect false sharing situations. Maqao
provides the following features:

• Intelligent navigation and flexible automated analysis (either predefined or
user defined) of binary code.

• Quality assessment of the code generated and detection of potential inefficien-
cies of the assembly code either statically or dynamically (value profiling). To
predict performance, Maqao has a performance model to identify the deliver-
able performance of the application and the individual contributions of several
factors to the performance degradation.

• Generation of hints and guidelines to drive the optimization process.

• Building of an evolving database of known performance issues on the target
architecture (currently Itanium 2 and Pentium).

Maqao is composed of different modules. Figure 3.1 shows the Madras,
Maqao core, plugins (developed in Lua script language [6]) and the user web inter-
face modules.

• Madras [100] is a library for disassembling and instrumenting binary files.
Madras uses a grammar associating binary expressions to assembly instruc-
tions, similar to yacc grammars, and generates a corresponding disassembler,
using a linear-sweep method (similar to objdump). This disassembler for x86
is then used by Maqao.

• Maqao core is a program that restructures the list of instructions built by
Madras into a call graph and builds the control flow graphs of the different
functions exposed.

3.3. Code Restructuring 37

Figure 3.1: Maqao framework with the connexion between different modules.

• The plugins are a convenient mechanism for the rapid prototyping of assem-
bly analysis. With an API to access the structures built by Maqao core and
instrumentation capabilities of Madras, this mechanism extends Maqao ca-
pabilities through scripting. There are many scripts available, ranging from
batch analysis to a web service for the user web interface. The plugins are
written in LUA. The majors plugins are:

– Performance Model: this consists in a set of plugins which evaluate the
performance of inner loops and provides performance improvement hints.
This is the work done in the thesis as a first contribution.

– Memory trace library: this plugin instruments multithreaded codes to
trace memory accesses and analyzes them.

• A user web interface is proposed for a more intuitive interaction with Maqao.
Requiring no installation, this interface enables the analysis of codes uploaded
on remote servers.

Figure 3.2 shows an example of the user web interface.

3.3 Code Restructuring

Maqao exploits static binary rewriting for reading and instrumenting executables.
Static binary rewriting refers to post-link time manipulation of binary executables.
This approach has the advantage, compared to approaches requiring compiler inter-
action (analysis of assembly code) or inclusion of libraries, to obviate the need of
recompiling or relinking. The API for reading and manipulating static binary files is
defined by Madras [100]. The disassembled binary code is then restructured: call
graphs, control flow graphs, loops, and dependence graphs on registers are built.

38 Chapter 3. MAQAO Static Analysis Tool

Figure 3.2: Maqao user web interface.

3.3.1 Call graph

Figure 3.3 shows a call graph built by Maqao. A call graph is a directed graph that
represents the calls to routines in a program. Each node in a call graph corresponds
to a routine/function/procedure. An edge between two routines e(f,g) means that
the routine f calls the routine g. If a cycle is detected in a call graph, that means
that there is a recursive call. In Maqao, the call graph construction uses labels
found in the binary, if any.

Figure 3.3: A Maqao call graph for a basic program.

3.3.2 Control flow graph

Figure 3.4 shows a control flow graph built by Maqao. A control flow graph is
a graph representation of all paths that might be taken in a program during its
execution. Each node in a control flow graph corresponds to a basic block. In
Maqao the building of the control flow graph is limited by indirect jumps that may
prevent from finding a correct control flow.

3.3.3 Data dependence graph

Figure 3.5 show a data dependence graph built by Maqao. The data dependence
graph is a graph representation of the dependency between objects. In Maqao it
represents the dependency between registers. Each node of the data dependence

3.3. Code Restructuring 39

Figure 3.4: A Maqao control flow graph for a basic program.

graph corresponds to an instruction. Two nodes are connected with an edge, if any
register dependency exists between the two nodes.

Figure 3.5: Maqao data dependence graph for a basic program. A node represents
an instruction. An edge corresponds to a register dependency between two nodes.
Each edge is tagged with a register that is the subject of the dependency, and the
dependency distance.

3.3.4 Loop detection

Maqao’s loop detection is based on the dominance algorithm of Cooper et al. [35].
It is a technique for computing dominators on a control flow graph. The algorithm
builds on the well-developed and well-understood theory of iterative data-flow anal-
ysis.

Considering that the dominance has been computed, the loop detection algo-
rithm can be easily implemented. Maqao implements the natural loop detection
algorithm detailed by S. Muchnick in his book [81].

40 Chapter 3. MAQAO Static Analysis Tool

3.4 Performance Model [24, 66]

Computer modeling is now a well-known approach to simulate an abstract model of
complex systems. It is used to explore the behavior of these complex systems and
to estimate/predict their performance.

The performance model of Maqao computes performance estimates based on
the assembly code. It evaluates the cycles required for executing innermost loops.
The reason for considering only the innermost loops is that they usually constitute
the most time consuming part of the code. The x86-Core2 architecture model we
consider takes into account the front-end pipeline (decoding, permanent register file
allocation, special microcoded instructions), the different ports for the execution
units [49], and the latencies of memory instructions. For memory instructions,
several latencies are considered, according to the location of the data in the memory
hierarchy. The evaluation provides an optimistic bound, meaning that the real code
may execute itself in more cycles due to some extra latency not taken into account
by our static model.

Maqao’s performance model (ie. the static analysis) collects several metrics for
a target program, in order to predict its performance on a Core2 architecture.

3.4.1 The Core 2 microarchitecture

The Intel Core2 microarchitecture is an x86 microarchitecture and an extended
design of the Pentium M microarchitecture. There are two or more CPU cores in
Core2 with a shared L2 cache and separate L1 caches. The Core2 has an out-of-order
execution, the pipeline has been expanded to handle 4 micro-operations per clock
cycle, and the execution units have been expended from 64 bits to 128 bits. The
reorder-buffer has 96 entries and the reservation station has 32 entries. Figure 3.6
illustrates these features [49].

Figure 3.6: Intel Core2 microarchitecture. [2]

The mechanism of out-of-order consists in delaying the execution of an instruc-

3.4. Performance Model [24, 66] 41

tion if its input data is not ready yet and to find a later instruction that can be
executed first if its input data is available. This can be done if the later instruction
does not need the output of the delayed instruction. If all the instructions have such
dependencies, then there is no opportunity for an out-of-order execution.

In the Core2, the instructions are fetched and decoded in order, then they wait
in the reservation station queue. When the input data of an instruction is ready, the
instruction is executed. After the execution, the result/output of the instruction is
queued. The result is not written back in the register file (ie. retired) until all the
older instructions have their results written back in the register file.

In previous in-order processors, stalls occur due to some dependencies that can-
not be circumvented. With an out-of-order architecture, some mechanisms are added
to allow dynamic scheduling of instructions and avoid the stalls:

• Instruction split

• Register renaming

Instruction split In an out-of-order microarchitecture, the instructions are trans-
lated into micro-instructions to better exploit the out-of-order mechanism. For ex-
ample, the instruction MUL [MEM],RAX, can be split into two micro-operations. One
for reading the memory and another one for the multiplication. For the instruction
ADD RAX,[MEM], three micro-operations are generated. One for reading the mem-
ory, a second one for the addition and a third one for writing the result in the
memory. The benefit of this splitting, is that the micro-operations can be executed
out-of-order. For example:

i R1 <– R1 + MEM1
i+1 R1 <– 5 + R1
i+2 R1 <– R1 * MEM2

The instruction i is split into two micro-operations. One for fetching MEM1 and
a second one for the addition. Instruction i+2 is split into two micro-operations
for fetching MEM2 and for the multiplication. With the out-of-order mechanism,
fetching MEM2 can be done at the same time as the instruction i+1 or even before
if both MEM1 and MEM2 are not in the cache (they can be fetched at the same
time).

Register renaming The register renaming mechanism allows to avoid some de-
pendencies such as write-after-read (WAR) and write-after-write (WAW). Breaking
such dependencies tends to exploit the out-of-order mechanism. In the following
example:

i R1 <– MEM1
i+1 R1 <– 6 + R1
i+2 MEM2 <– R1
i+3 R1 <– MEM3
i+4 R1 <– 3 * R1
i+5 MEM4 <– R1

The three last instructions are completely independent from the three first. The
microprocessor detects this independence and replaces R1 in these three last instruc-
tions with a temporary register R20. The result is as follows:

42 Chapter 3. MAQAO Static Analysis Tool

i R1 <– MEM1
i+1 R1 <– 6 + R1
i+2 MEM2 <– R1
i+3 R20 <– MEM3
i+4 R20 <– 3 * R20
i+5 MEM4 <– R20

The Independence between the instructions is now clear and the mechanism of
our-of-order is exploited. That means that if MEM1 and MEM3 are not in the
cache, they can be fetched at the same time before the the addition i+1.

Pipeline When an instruction is executed in a Core2 processor, it crosses the
following stages of the pipeline:

1. Fetch/Predecoder

2. Decoder

3. Reorder-Buffer read stage

4. Execution Units

The behavior of these previous stages has been implemented in our performance
model. As they are, most of the time, considered as a bottleneck, their behavior
has been implemented for performance prediction.

Algorithm 1 Maqao Performance Model Algorithm.
Require: Binary = The target binary to analyze
Require: Asmfile = The disassembled binary
1: Madras disassembles Binary and generates Asmfile
2: for (each Function in Asmfile) do
3: for (each Loop in Function) do
4: Tpredec = Predecoding(Loop)
5: Tdec = Decoding(Loop Predecoded)
6: Trob = RoB-read(Loop Decoded)
7: Tbend = Back-End(Loop)
8: Tmetrics = Other-Metrics(Loop)
9: Gather the different times Ti with i in {predec, dec, rob, bend, metrics}

10: Generate a performance analysis report for Loop
11: end for
12: end for

Algorithm 1 shows the performance model implemented on Maqao. The per-
formance model is applied on each loop of each function of the target binary. For
each loop, the behavior of each stage of the pipeline is simulated. First, the loop is
predecoded (decomposed on blocks of full instructions), then the predecoded blocks
are sent to the decoder that decodes the instructions of each predecoded block. Af-
ter decoding, the reorder-buffer read stage, is the stage where the renamed registers
(the mechanism of register renaming is applied after decoding) are stored. In the
RoB-read stage, some stalls can occur depending on the minimum number of regis-
ters that can be read from the register file (see Chapter 2, Section 2.3.1.6. When an
instruction has its operands ready, it is dispatched in its corresponding execution
port.

3.4. Performance Model [24, 66] 43

The computation of all the different metrics, is independent from the front-end
(predec, dec, RoB-read) and the back-end computation.

The following sections describe each function of the performance model.

3.4.2 Predecoding

The purpose of the predecoder is to detect where each instruction begins. The
maximum throughput of the predecoder in the Core2 microarchitecture is 16 bytes
per clock cycle (about 6 instructions). When a loop is predecoded, it is split into
blocks of 16 bytes. Any instruction that crosses the 16-byte boundary is unhandled
until the next 16-byte block is processed. Between the predecoder and the decoder
there is a queue of 64 bytes called the loop buffer. If a loop is completely contained
in the loop buffer, the throughput of the predecoder is up to 32 bytes per clock
cycle. The predecoder takes as input a target loop and generates a list of blocks of
instructions. Each block is a 16-byte or a 32-byte block depending on the size of
the loop. The number of blocks corresponds to the number of cycles spent in the
predecoder. Algorithm 2 explains the process of predecoding depending on the size
of the input loop [49].

Algorithm 2 Predecoder Algorithm.
Require: Asmfile = The disassembled binary using Madras
1: for (each Function in Asmfile) do
2: for (each Loop in Function) do
3: if (size of Loop > 64 bytes) then
4: Split Loop into blocks of 16 bytes max
5: Each 16-byte block contains full instructions
6: else
7: Split Loop into blocks of 32 bytes max
8: Each 32-byte block contains full instructions
9: end if

10: Tpredec = number of 16-byte or 32-byte blocks
11: end for
12: end for

3.4.3 Decoding

There are 4 decoders organized in a 4-1-1-1 pattern. The first decoder decodes 4 uops
and the others one uop each per cycle. The input of the decoder is the predecoded
blocks of 16 or 32 bytes. If the 16-byte block contains 4 instructions of 2 uops each,
the maximal throughput of the decoder is 2 uops per clock cycle. The instructions
that generate more than 4 uops use microcode ROM and takes several cycles to
decode. Experimentally, we have found 2 cycles. The output of the decoder is a list
of blocks of instructions where each block fit in a 4-1-1-1 pattern, decoded in 1 cycle
[49]. Algorithm 3 illustrates the process of decoding implemented in Maqao.

In the Core2 microarchitecture, there is a mechanism called micro-operation and
macro-operation fusion. The micro-operation fusion consists in the fusion of two
micro-operations of different instructions. The macro-operation fusion corresponds
to the fusion of two instructions. These two mechanisms, when performed, allows
to increase the throughput of the decoder [49].

44 Chapter 3. MAQAO Static Analysis Tool

These two concepts are not implemented in out algorithm, because there are not
enough documentation about the list of the instructions that will be fused.

Algorithm 3 Decoder Algorithm.
Require: Lpredec = The list of 16 or 32 bytes predecoded blocks
Require: Ldec = The list of blocks decoded
1: for (each Block in Lpredec) do
2: if (Block does not fit in 4-1-1-1 pattern) then
3: Split Block into instructions blocks that fit in the 4-1-1-1 pattern
4: Ldec = Ldec + number of blocks generated from the previous split
5: else
6: Ldec = Ldec + 1
7: end if
8: end for
9: Tdec = Ldec

3.4.4 Reorder-buffer-read stage

The Reorder-buffer-read stage can not read more than 3 different registers from the
permanent register file per clock cycle. The first two register read ports can read
registers for instructions operands, base pointers, and index pointers. The third read
port can only read registers for index pointers. If there are more than 2 registers for
base pointers or instruction operands, a read-stall is generated. Registers that have
been written recently can be read from the ROB-read if they have not yet passed the
ROB-writeback stage. It takes approximately 5 clock cycles for a uop to pass from
the ROB-read stage to the ROB-writeback stage. A register can be read without
problem if it has been modified within the last 5 clock cycles [49]. Algorithm 4
shows how the process described below, has been implemented in Maqao.

3.4.5 Back-end

Figure 3.7 shows the execution units in the Core2 microarchitecture. Each port is
dedicated to an execution unit. In the Core2, the ports are dedicated to [49]:

• P0-P1-P5: computation and branches

• P2: memory accesses (loads)

• P3: memory accesses (addresses stores)

• P4: memory accesses (data stores)

Each instruction has its corresponding execution ports depending of the type
of the instruction (fp or int) and the type of its operands (register, memory, or
address).

For each execution port, Maqao computes an estimation of the number of cy-
cles spent on each port. The performance estimate takes into account the special
case of instructions that are split into different micro-operations to be executed on
multiple ports [49]. When an instruction (or a micro-operation) can be executed
on different ports (a common example is simple integer instructions which can be
assigned indifferently to P0, P1 and P5), the less saturated port is chosen. Since

3.4. Performance Model [24, 66] 45

Algorithm 4 Reorder-Buffer read Algorithm.
Require: Ldec = The list of instructions blocks decoded
Require: Tstall = The number of stalls occurred
1: for (each Block in Ldec) do
2: for (each Register in Block) do
3: if (Register is a base register that is not written within 5 cycles) then
4: Base-Stall = Base-Stall + 1
5: else
6: if (Register is an index register that is not written within 5 cycles)

then
7: Index-Stall = Index-Stall + 1
8: end if
9: end if

10: end for
11: end for
12: if (Base-Stall > 2) then
13: Tbstall = Tbstall + (Base-Stall/2) + (Base-Stall mod 2)
14: end if
15: if (Index-Stall > 1) then
16: Tistall = Tistall + Index-Stall
17: end if
18: Tdec = Ldec + max(Tbstall,Tistall)

every port can operate in parallel, this metric is essential to measure the amount
of parallelism exploitable between the key functional units: add, multiply, load and
store units. This provides a first estimate of a best performance case (assuming all
memory operands are in cache level 1) and also of the potential imbalance between
the port usage. For example, depending on the number of cycles spent in each port,
this information allows to detect whether the code is memory bound (P2, P3-P4)
or computation bound (P0-P1-P5), and by how much. The number of cycles spent
on each port gives us an accurate ranking on the potential bottlenecks of the code.

Figure 3.7: Core2 execution unit overview [94].

46 Chapter 3. MAQAO Static Analysis Tool

The different execution ports P0 to P5 in the Core2 architecture correspond to
(Fig. 3.7).

3.4.6 Vectorization ratios

Vectorization is an instruction level of parallelization. It processes computations not
just on one scalar operand, but on a whole vector, 128 bits vector on modern archi-
tecture, which represents floating-point operands. Maqao’s static analysis provides
individual load, store, add, and multiply reports on vector instruction usage: for
example a vector ratio of 1 for multiply operations means that all of the multiply
operations have been vectorized. This ratio is computed taking into account only
floating point operations and full length packed vector operations. These metrics
are essential to evaluate the quality of the vectorizing capabilities of the compiler
and possibly to overcome some of its deficiencies by inserting appropriate pragmas.
The vectorization ratios computed consist in: global vectorization (GV), load vector-
ization (LV), store vectorization (SV), addition/multiplication vectorization (AV,MV).
These vectorization ratios show the quality of the code in term of vectorization. The
user can immediately see if its code is well vectorized or not, without dealing with
the assembly code. These ratios are computed, for a target loop, as follows:

GV = Number of Packed Instr / Total Number of SSE Instructions
LV = Number of Packed Loads / Total Number of SSE Loads
SV = Number of Packed Stores / Total Number of SSE Stores
AV = Number of Packed Add / Total Number of SSE Additions
MV = Number of Packed Mult / Total Number of SSE Multiplications

In the SSE instructions, there are two types of instructions: the packed and the
scalar instructions. The scalar instructions that are dealing with 64 bits of the
whole 128-bit vector, when the packed instructions are the ones dealing with the
whole 128 bits vector.

The portion of code below has been analyzed with Maqao. This code corre-
sponds to a DAXPY [104]. The DAXPY has been compiled with Intel C compiler.
One time with -O1 flag, and a second time -O3.

• DAXPY compiled with the -O1 flag is not vectorized
B1:
movsd (%rdi,%rax,8),%xmm1
mulsd %xmm0, %xmm1

for (i=0 ; i<size ; i++) addsd (%rsi,%rax,8), %xmm1
y[i] += alpha*x[i] movsd %xmm1, (%rsi,%rax,8)

incq %rax
cmpq %r8, %rax
jb B1

• Maqao’s vectorization report:

Global Vectorization = 0.00
Load Vectorization = 0.00
Store Vectorization = 0.00
Multiplication Vectorization = 0.00
Add-Sub Vectorization = 0.00

3.4. Performance Model [24, 66] 47

• DAXPY compiled with the -O3 flag is not vectorized
B1:
movaps (%rdi,%rax,8),%xmm1
mulpd %xmm0, %xmm1

for (i=0 ; i<size ; i++) addpd (%rsi,%rax,8), %xmm1
y[i] += alpha*x[i] movaps %xmm1, (%rsi,%rax,8)

addq $16, %rax
cmpq %r8, %rax
jb B1

• Maqao’s vectorization report:

Global Vectorization = 1.00
Load Vectorization = 1.00
Store Vectorization = 1.00
Multiplication Vectorization = 1.00
Add-Sub Vectorization = 1.00

These ratios give a first information about the quality of the code, the code is
fully vectorized. This information allows the user to know that there is no need to
make efforts to vectorize the code. On the other hand, if the ratios were all equal
to 0, that means that the first optimization to apply to this code is vectorization to
increase the ILP (ie. instructions per cycle).

3.4.7 Performance prediction

Performance prediction L1 Taking into account all of the limitations of the
pipeline front-end and of the pipeline back-end, Maqao’s static analysis provides
us with an estimate of the cycles necessary to execute one loop iteration assuming
all the operands are in L1. The limitations that we are taking into account are:
instruction predecoding, instruction decoding, permanent register file allocation,
special microcoded instructions. The front-end can be a limitation in these cases:

• Since the throughput of the predecoder is 16 bytes per cycle, the longer is the
loop, the more cycles are spent in predecoding.

• The instruction decoding can be a limitation if the instructions are not well
scheduled (not in a 4-1-1-1 pattern) to optimize the throughput of the decoder.
If the decoder is a limitation, then the only solution is to change the scheduling
of the instructions so they can fit in the 4-1-1-1 pattern. This should be done
taking into account the dependencies.

• The permanent register file allocation can be a limitation because only a lim-
ited number of registers can be read. In Core2 there is a limitation of 3
registers to read from the permanent register file. This bottleneck depends on
the microarchitecture. In the Sandy Bridge, there is no limit to the number
of the registers to read from the permanent register file [49].

• The microcoded instructions, are instructions with more than 4 micro-
operations and can not be decoded. These instructions, use the microcode
ROM and takes multiple cycles to decode, in the Core2.

In most cases, the front-end bound is only useful as a lower bound.

48 Chapter 3. MAQAO Static Analysis Tool

Performance prediction L2/RAM Relying on memory access patterns de-
tected at the assembly level and microbenchmarking results on the same memory
patterns, Maqao’s static analysis computes an estimate for the execution time of
a loop iteration, assuming all operands are in a given level of the memory hierarchy
which means, the data reside in L1, L2 or RAM, and are accessed with stride 1. The
stride of an array corresponds to the number of locations in memory between succes-
sive elements of an array. The memory patterns used for the pattern matching have
previously been determined by systematic hierarchical microbenchmarking: first a
simple “Load X” (resp. “Store Y”) kernel, performing a single read stream through
an array X, resp. a simple writing stream through an array Y, is measured under
various conditions (unrolling, instruction used, etc .). Then more complex patterns
“Load X Store Y”, “Load X Load Y”, “Load X Load Y Store Z”, ... are measured to
quantify the interaction between Load streams and Stores streams. Therefore this
simple set of patterns is used for our performance prediction [64].

There are 9 patterns built and measured for the prediction in L2 and RAM.
These patterns are small portions of code built in assembly. They are called mi-
crobenchmarks:

• Lx : 1 load on vector X

• Sx : 1 store on vector X

• LxLy : 2 loads on 2 different vectors (X/Y)

• LxSy : 1 load and one store on 2 different vectors (X/Y)

• LxLySz : 2 loads and 1 store on 3 different vectors (X/Y/Z)

• LyLxSy : 1 load on vector X and 1 load/store on vector Y

• LxLyLzSt : 3 loads and 1 store on 4 different vectors (X/Y/Z/T)

• LxLySzSt : 2 loads and 2 stores on 4 different vectors (X/Y/Z/T)

• LxLyLzStSu : 3 loads and 2 stores on 5 different vectors (X/Y/Z/T/U)

These microbenchmarks have been built with two kinds of assembly instructions:
aligned & unaligned instructions.

• Aligned instruction : data must be aligned on a 16Bytes boundary.

• Unaligned instruction : data don’t have to be aligned on a 16Bytes boundary.

The different microbenchmarks used for the prediction and other microbenchmarks
are described in Appendix A.

The L2 estimate constitutes a reasonable performance objective while the RAM
estimate is a stride 1 worst case. The drawback of both of these estimates is that
they ignore the stride issue which in RAM will be essential, and, second, that they
do not take into account the prefetching, and the mixture of hits and misses which is
typical for real applications. However, it should be noted that microbenchmarking
already accounts for some typical mixture of hits/misses resulting from spatial lo-
cality usage. For stride 1 memory accesses, microbenchmarking does not distinguish
between primary misses which are occurring for the first word access to a cache line,
and secondary misses/hits that occur when subsequent words in the cache line are

3.4. Performance Model [24, 66] 49

requested. It provides an estimate of the average time for accessing a memory loca-
tion in a stride 1 access pattern which means that the array is stored in contiguous
memory. To improve the accuracy of the performance prediction, we plan to enrich
the data base of microbenchmarks, so larger patterns can be recognized in the target
loop, this will ensure more accurate performance predictions.

The pattern matching can also be done with multicore microbenchmarks. In-
deed, multicore microbenchmarks allow to measure the effect of shared resources.
For example, while n cores are n times more powerful in term of computation, the
memory bandwidth is still a shared resource. Perform the pattern matching with
multicore microbenchmarks gives important information on the behavior of the an-
alyzed code.

Performance prediction for full vectorization In cases where the code is par-
tially or not vectorized, Maqao’s static analysis computes performance estimations
assuming full vectorization. This is performed by replacing the scalar operations by
their vector counterparts and updating the timing estimate due to the use of these
instructions. This is particularly useful to guide the optimization process and avoid
useless efforts: for example, indirect access to arrays cannot be vectorized . How-
ever, in most loops, these indirect accesses are followed by floating point operations
(adds or multiplies) which could be vectorized. The Maqao performance projection
gives us quickly an estimate of whether trying to vectorize these operations should
pay off or not.

3.4.8 Others metrics

Maqao’s static analysis computes other metrics that give more information about
the quality of the code analyzed. These metrics are :

Number of Bytes loaded per cycles:
LD Bytes/Cycle = Total number of Bytes loaded /

Total number of Cycles

Number of Bytes stored per cycles:
ST Bytes/Cycle = Total number of Bytes stored /

Total number of Cycles

Number of XMM registers used (to check spilling)

Number of instructions per cycle in L1, L2, and RAM:
IPC = Total number of Instructions /

Total number of Cycles

Number of floating-point instructions per cycle in
L1, L2, and RAM:
FPOPS = [(4*PACKED S) + (2*PACKED D) + SCALAR(S/D)] /

Total Number of Cycles

with:
PACKED S = Packed Simple precision instruction
PACKED D = Packed Double precision instruction

50 Chapter 3. MAQAO Static Analysis Tool

SCALAR S = Scalar Simple precision instruction
SCALAR D = Scalar Double precision instruction

All the metrics described in the performance model Section 3.4, are computed by
Maqao’s static analysis and displayed as shown in Figure 3.8. This figure shows
how all the metrics described previously are shown in the web interface. There are
first some loop attributes, such as, the number of instructions per cycle IPC, in L1,
L2, and RAM ; the number of floating-point instructions per cycle FPOPS ; and
the number of bytes loaded and stored per cycle. Then we have the vectorization
ratios with a ratio of 1 meaning that the loop is fully vectorized. The third part
corresponds to the metrics about the front-end. The fourth part is the dispatch
on the execution ports, and finally, the performance prediction in cycles. The N
corresponds to the number of iterations of the loop which is not known statically.

These metrics, as shown, give static information about the quality of the code,
if the code is memory bound or compute bound, and a prediction of performance in
the different cache levels.

Figure 3.8: Maqao display of the performance model metrics computed for a target
loop.

3.5. Maqao’s Static Analysis on Numerical Recipes 51

codelet__28 MAQAO Analysis (NR : svdcmp)

Loop ID FP_per_cycle BYTES_LOADED_per_cycle BYTES_STORED_per_cycle Ratio_Vect
Execution ports dispatch (in cycles)

XMM Reg
P0 P1 P2 P3 P4 P5

No Unroll Loop1 0,5 2 2 0 2 1 1 1 1 1 2
Unroll(2) Loop1 0,5 2 2 0 4 2 2 2 2 1 3

Unroll(3)
Loop1 1 4 4 0 3 3 3 3 3 2 4
Loop2 0,5 2 2 0 2 2 1 1 1 1 2

Unroll(4)
Loop1 0,67 2,67 2,67 0 6 2 4 4 4 1 5
Loop2 0,5 2 2 0 2 1 1 1 1 1 2

Unroll(5)
Loop1 1 4 4 0 5 4 5 5 5 3 6
Loop2 0,5 2 2 0 2 1 1 1 1 1 2

Unroll(6)
Loop1 0,5 2 2 0 12 1 6 6 6 1 7
Loop2 0,5 2 2 0 2 1 1 1 1 1 2

Unroll(7)
Loop1 1 4 4 0 7 5 7 7 7 4 8
Loop2 0,5 2 2 0 2 1 1 1 1 1 2

Unroll(8)
Loop1 0,8 3,2 3,2 0 10 2 8 8 8 1 9
Loop2 0,5 2 2 0 2 1 1 1 1 1 2

Default Loop1 0,5 2 2 0 4 2 2 2 2 1 3

Table 3.1: Maqao’s static analysis on the svdcmp codelet from Numerical Recipes.
The svdcmp performs a Singular Value Decomposition [85]. In this case the
codelets are characterized according to two static metrics: Ratio − vect = O and
FP_per_cycle 6= 0

3.5 Maqao’s Static Analysis on Numerical Recipes

Maqao’s static analysis has been used on some codelets of the Numerical Recipes
[85] to help the prediction of the best unroll factor. The term codelet is used for a
piece of code having a simple regular loop at source level. Maqao’s static analysis
is applied on different codelets extracted from 18 Numerical Recipes. The purpose
is to use the information provided by Maqao’s static analysis to help extract rules
to build an algorithm for unroll factor prediction [82].

Maqao’s static analysis has been used with the Numerical Recipes codelets to
characterize the codelets depending on different metrics/information extracted from
these codelets. This charaterization helped to predict the best unroll factor [82].

Table 3.1 illustrates the Maqao’s static analysis applied on one of the codelets
of the Numerical Recipes. Depending on the codelet, some static metrics, from the
Maqao’s static analysis, are extracted and used to understand what happens when
the code is unrolled.

Tables 3.2 and 3.3 show that Maqao-s static analysis on two other codelets from
the Numerical Recipes. They show how the static metrics help to characterize the
codelets in order to gather information for an unroll factor prediction.

3.6 Maqao’s Static Analysis on Real-Life Applications

To illustrate the interest of the metrics described in Section 3.4, we performed
a static analysis using Maqao on two high performance codes from the ParMA
project [7]: AIOLOS from RECOM [87], and ITRLSOL from Dassault-Aviation [40, 7].
Two code fragments are shown in Figure 3.9 are the hottest loops in the hottest
subroutine in both AIOLOS and ITRLSOL. The Intel C and Fortran Compilers (ifort
and icc v11.0) are used to generate the binary codes analyzed by Maqao.

3.6.1 3D Combustion simulation code

The AIOLOS[87] application provided by RECOM builds a 3D model of industrial-
scale furnaces, and in particular, helps solve problems due to the corrosion of the
walls of such a furnace at high temperatures. The most time-consuming subroutine
in AIOLOS is RBgauss, which implements a red-black iterative solver. The choice of
the red-black algorithm allows for easy parallelization with, for example, OpenMP.

52 Chapter 3. MAQAO Static Analysis Tool

codelet__7 MAQAO Analysis (NR : gaussj)

Loop ID
Execution ports dispatch (in cycles)

XMM Reg
P0 P1 P2 P3 P4 P5

No Unroll
Loop1 2 1 1 1 1 1 2
Loop2 2 1 1 1 1 1 2
Loop3 2 1 1 1 1 1 2

Unroll(2)
Loop1 2 1 1 1 1 1 2
Loop2 2 1 2 2 2 1 3
Loop3 2 1 1 1 1 1 2

Unroll(3)
Loop1 2 1 1 1 1 1 2
Loop2 2 1 1 1 1 1 2
Loop3 2 1 1 1 1 1 2

Unroll(4)
Loop1 2 1 1 1 1 1 2
Loop2 4 1 4 4 4 1 5
Loop3 2 1 1 1 1 1 2

Unroll(5)
Loop1 2 1 1 1 1 1 2
Loop2 2 1 1 1 1 1 2
Loop3 2 1 1 1 1 1 2

Unroll(6)
Loop1 2 1 1 1 1 1 2
Loop2 2 1 1 1 1 1 2
Loop3 2 1 1 1 1 1 2

Unroll(7)
Loop1 2 1 1 1 1 1 2
Loop2 2 1 1 1 1 1 2
Loop3 2 1 1 1 1 1 2

Unroll(8)
Loop1 2 1 1 1 1 1 2
Loop2 8 1 8 8 8 1 9
Loop3 2 1 1 1 1 1 2

Default
Loop1 2 1 1 1 1 1 2
Loop2 2 1 2 2 2 1 3
Loop3 2 1 1 1 1 1 2

Table 3.2: Maqao’s static analysis on the gaussj codelet from Numerical Recipes.
The gaussj performs a Gauss-Jordan Elimination [85]. The interesting loops are
the ones that have been transformed : execution ports dispatch different from the
original no-unroll loop dispatch.

codelet__1 MAQAO Analysis (NR : toeplz)

Loop ID
Execution ports dispatch (in cycles)

XMM Reg
P0 P1 P2 P3 P4 P5

No Unroll Loop1 4 4 3 0 0 3 5
Unroll(2) Loop1 5 5 6 0 0 4 10

Unroll(3)
Loop1 6 6 9 0 0 4 15
Loop2 4 4 3 0 0 3 5

Unroll(4)
Loop1 8 8 12 0 0 6 16
Loop2 4 4 3 0 0 3 5

Unroll(5)
Loop1 10 10 15 0 0 4 16
Loop2 4 4 3 0 0 3 5

Unroll(6)
Loop1 12 12 18 0 0 4 16
Loop2 4 4 3 0 0 3 5

Unroll(7)
Loop1 14 14 21 0 0 4 16
Loop2 4 4 3 0 0 3 5

Unroll(8)
Loop1 16 16 34 2 2 6 16
Loop2 4 4 3 0 0 3 5

Default Loop1 5 5 6 0 0 4 10

Table 3.3: Maqao’s static analysis on the toeplz codelet from Numerical Recipes.
The svdcmp builds Toeplitz matrices [85]. In this case, the loops with a number of
XMM registers above 16 which is the maximum number of XMM registers in the
Core 2 architecture. That shows that there is no need to unroll more because of
register spilling.

3.6. Maqao’s Static Analysis on Real-Life Applications 53

DO IDO=1,NREDD
INC = INDINR(IDO)
HANB = AM(INC,1)*PHI(INC+1) &
+ AM(INC,2)*PHI(INC-1) &
+ AM(INC,3)*PHI(INC+INPD) &
+ AM(INC,4)*PHI(INC-INPD) &
+ AM(INC,5)*PHI(INC+NIJ) &
+ AM(INC,6)*PHI(INC-NIJ) &
+ SU(INC)
DLTPHI = HANB/AM(INC,7)-PHI(INC)
PHI(INC) = PHI(INC) + DLTPHI
RESI = RESI + ABS(DLTPHI)
RSUM = RSUM + ABS(PHI(INC))

ENDO

(a) AIOLOS analyzed code fragment

DO cb=1,ncbt
igp = isg isg = icolb(icb+1) igt = isg - igp
DO ig=1,igt
e = ig + igp i = nnbar(e,1) j = nnbar(e,2)
DO k=1,ndof
DO l=1,ndof
vecy(i,k) = vecy(i,k) + ompu(e,k,l)*

vecx(j,l)
vecy(j,k) = vecy(j,k) + ompl(e,k,l)*

vecx(i,l)
ENDO

ENDO
ENDO

ENDO

(b) ITRLSOL analyzed code fragment

Figure 3.9: Two examples of codes. The code (a) corresponds to the hottest loop
of the hottest subroutine of the AIOLOS application. It implements the red black
iterative solver [87]. The code (b) corresponds to the hottest loop of the hottest
subroutine of the ITRLSOL application. It implements a sparse matrix-vector product
[40, 7].

(a) Loop attributes & Vectorization (b) Front-End & Back-End & Per-
formance prediction

Figure 3.10: Maqao’s static analysis performed on RBgauss. Different metrics are
computed: front-end, back-end, vectorization ratios, and performance predictions.

The RBgauss subroutine contains two loops (denoted Red and Black loop) with a
communication between them using MPI. The two loops consist of :

• Red loop: it is an iterating loop over half of the AM array elements (red el-
ements) to update with the other half of the AM array elements (black). It
means that each red element depends on its four immediate black neighbors
(Figure 3.9 (a)).

• Black loop: it has the same structure as the red loop but it updates the black
elements with the red ones (computed in the Red loop).

The static analysis with Maqao is performed on the Red loop as both loops
are the same. The global set of metrics computed for the Red loop is shown in

54 Chapter 3. MAQAO Static Analysis Tool

(a) Loop attributes & Vectorization (b) Front-End & Back-End & Per-
formance prediction

Figure 3.11: Maqao’s static analysis performed on EUFLUXm. Different metrics are
computed: front-end, back-end, vectorization ratios, and performance predictions.

Figure 3.10. Below a summary of the values:

• Vectorization report: the global vectorization ratio is equal to 6%. The com-
piler has not vectorized the loop.

• Execution units usage (the format is PORT_NUMBER:CYCLES_SPENT):
P0:8 / P1:10 / P2:21 / P3:1 / P4:1 / P5:4. This shows that the loop is bounded
by the loads.

• L1 prediction: 21 cycles. This corresponds to maximum value between: P0,
P1, P2, P3, P4, and P5, and it is considered as the optimal bound.

• L2 prediction: 31.53 cycles.

• RAM prediction: 74.65 cycles.

• Vectorization prediction (assuming data in L1): 9.75 cycles.

Thanks to the static analysis of Maqao, we can notice that the code is memory
bound on Core 2, since it takes 21 cycles to execute all the read instructions. This
corresponds to the largest number of cycles on any given port. It also shows that
even if the code is not vectorized, it is not worth it to force the vectorization of
arithmetic operations, because the code is memory bounded.

3.6.2 Iterative solver for the Navier-Stokes equation

The ITRLSOL[40, 7] application, developed by Dassault-aviation, solves the Navier-
Stokes equation, through the use of Computational Fluid Dynamics (CFD), with
the help of an iterative solver. The most time-consuming subroutine in ITRLSOL
is EUFLUXm (Figure 3.9 (b)), which implements a sparse matrix-vector product.
The EUFLUXm subroutine contains two groups of quadruply nested loops (2 iden-
tical quadruply nested loops in each group).

For the considered 4-level loop nest in this code, the global set of metrics com-
puted is shown in Figure 3.11. Below is a summary of the values:

3.7. Search for accuracy 55

• Vectorization report: all the ratios of vectorization are equal to 0%. The
compiler has not vectorized any of the loops.

• Execution units usage (the format is PORT_NUMBER:CYCLES_SPENT):
P0:3 / P1:3 / P2:6 / P3:2 / P4:2 / P5:2

• L1 prediction: 6 cycles.

• L2 prediction: 13.05 cycles.

• RAM prediction: 37.29 cycles.

• Vectorization prediction (assuming data in L1): 3 cycles.

The static analysis with Maqao shows that the code is dominated by memory
accesses (6 cycles to execute all load instructions) (max(P0, P1, P2, P3, P4, P5) =
P2, the port of loads) and not vectorized (vectorization ratio = 0). This information
gives a first impression on the code quality.

3.7 Search for accuracy

Maqao’s static analysis is a tool used to gather data about the quality of the code,
quickly. Indeed, it does not have any knowledge about dynamic phenomena. It
analyzes the binary generated, offline, without execution. Maqao is able to give
estimations about the number of cycles spent in the different stages of the pipeline.
Maqao’s static analysis is based on a x86 performance model that mimics the be-
havior of the processor. The first version of Maqao was implemented for the IA64
architecture. The in-order behavior of this architecture and the instruction bundles
make it easier to implement the performance model. However, for x86, it is not
that easy. The introduction of out-of-order mechanism, the micro-operations, the
limitation of the register file ports makes the understand and the implementation
of the x86 performance model, in Maqao, more complicated. Having an accurate
performance model was one of the objectives of this thesis. This performance model,
gives a more accurate room of improvement. Indeed, the detailed model goes further
then just giving an estimation of GFLOPS, which gives to the programmer a false
impression of how much the performance can be increased. Moreover, the pattern
matching with microbenchmarks, used, gives an important information about the
upper bound that can be achieved depending on the data location. An useful in-
formation about the data location is then provided which can give a first idea for
optimization. Indeed, if the performance of the target code are similar to the perfor-
mance of a RAM microbenchmark, then probably, the prefetching can be considered
as an optimization.

A real research and engineering works have been done, to achieve this objective.
The performance model implemented for the x86 architectures and precisely for the
Core 2, is the first contribution of this thesis. The model implemented can easily
be extended to the other new x86 architecture such as the Nehalem or the Sandy
Bridge.

3.8 Limitations

Maqao’s static analysis is a tool for a binary code inspection. It is the first step
in a comprehensive software quality-control regime. The main drawback of a static

56 Chapter 3. MAQAO Static Analysis Tool

analysis, is that it does not consider any dynamic phenomenon. Maqao’s static
analysis is able to give an estimate of a lower bound that can be achieved but this
lower bound does not take into account any of the known dynamic behaviors (ie.
memory access pattern, 4K-aliasing, etc.)

3.9 Conclusion

In this chapter, we address Maqao’s static analysis [66, 24], a part of Maqao
which is a tool for performance tuning that relies on both the static analysis of
binaries and on the data collected through instrumentation. The static analysis is
combined with the hint mechanism of Maqao in order to help the user locate easily
in the application’s source code the code fragments that exhibit poor performance.
Moreover, this analysis provides a rough estimate of possible performance gains that
could be extracted by an efficient vectorization. The static analysis is considered
as a first step in the process of quality-control. It gives a first conclusion about the
quality of the code, potential bottlenecks, and first potential optimizations. In the
next chapter, we address the second contribution in this thesis, which is Decan, a
Decremental Analysis tool.

Chapter 4

DECAN: Decremental
Performance Analysis Tool

4.1 Introduction

The world of High Performance Computing is dynamic and constantly evolv-
ing, achieving the petaflop performance and attaining exaflop in the near future.
Nonetheless, peak performance is often achieved only for a few applications and
after a rigorous performance optimization process for a target architecture. Un-
fortunately, current optimizing compilers and run-time systems often fail to keep
pace with the complexity of the available hardware and applications, thus leaving
many programs underperforming while wasting expensive computing resources and
energy. Therefore, users are still forced to resort to the tedious, repetitive, and
time-consuming process of understanding the behavior of a large number of legacy,
or even new, applications and optimizing them for constantly evolving architec-
tures. Such approaches are expensive, and can considerably slow down the time to
the market for new HPC systems.

In past decades, iterative feedback-directed compilation became a popular black-
box approach to empirically improve static compilers and adapt code to any given
architecture [103, 34, 26, 98]. This technique helps find the best performing variant
of a program by automating the exploration of the available optimization space of
this program. However, such approaches are usually slow, limited to a set of avail-
able program transformations, and rarely provide clear insight about performance
problems and bottlenecks. They also offer no assistance in the case of algorith-
mic changes or when manual optimizations are needed. Therefore, reliable dynamic
performance analysis becomes critical to quickly detect performance anomalies and
bottlenecks to help users drive manual or automatic optimization processes or even
suggest possible hardware improvements to improve the utilization of all available
resources.

Multiple tools and techniques have been developed to perform dynamic program
and system analysis that differ in scope, precision, and overhead. Most of these
techniques are based on instrumentation [52, 71], statistical sampling [4, 80, 70],
simulation [37] or a combination thereof [91, 10, 89, 48, 73]. Architecture and system
simulation tools can provide accurate information about program execution, but
most of the time they induce several orders of magnitude slowdowns and require a
detailed simulator that is rarely available, particularly for rapidly evolving hardware.

Our initial experience with performance tools has been that they are overly
complex, not easily portable, and often inaccurate when applied to large industrial
HPC applications. We seek a simple and portable alternative solution to detect
instructions associated with performance anomalies. During the program analysis
and traditional feedback-directed optimization, we often run the same program with
the same input multiple times while ignoring the output. Naturally, during produc-

58 Chapter 4. DECAN: Decremental Performance Analysis Tool

tion runs, the optimized program should be semantically equivalent to the original
program and should produce the same output, but we reason that there is no strict
requirement on semantics during performance analysis.

In this chapter we present Decan, an automated tool for decremental perfor-
mance analysis. The motivations of Decan are threefold:
• Evaluate room for improvement: because any optimization effort can be long

and tedious, in order to budget it wisely, it is necessary to know in advance the
upper limit of the potential gains to get from this effort.
• Correlate with the source code: because dealing with memory optimizations

means that the data layout may have to be changed, to speed-up the code refitting
task Decan informs which data structure has to be reconsidered.

Decan deletes or replaces x86 SSE (Streaming SIMD Extensions) instructions
inside regular loops to detect bottlenecks. This replacement, done directly at the
binary level, generates a set of modified binaries that will be associated to perfor-
mance. For the evaluation time of all of these versions Decan performs a kernel
execution that allows to run the hot code region within its original execution envi-
ronment without running the whole application. This means that only the kernel of
interest with and without modification is being run and not the entire program.

Due to the deletion/replacement of an instruction, the semantics of the original
program is modified. Despite the theoretical risk of program crashes and register
overflows, empirically Decan’s approach has been found to be robust enough to
handle most regular, or even with indirections, HPC loops. It appears that changing
the semantics of the program allows to extract more precise information about the
behavior of the hot code region. This can be compared to a debug process. When
a programmer has a bug, he adds or removes some expressions in his code to detect
the bug. The concept of Decan is similar, but the bug in that case is the bad
performance.

The Decan technique opens up many performance analysis and optimization
opportunities. As Decan is doing fine-grained analysis compared to existing tools,
it may be considered as an additional tool that can be combined with higher level
profiling tools, in order to have a precise code analysis.

This chapter is organized as follows: Section 4.2 gives a brief overview of the De-
can process. Section 4.3 describes a motivating example. Section 4.4 presents the
decremental analysis concept and infrastructure. Section 4.5 is about the method-
ology used for performance measurements in Decan. Section 4.6 gives the experi-
mental evaluation of Decan.

4.2 Overview

The concept of Decan is similar to the debug process that every programmer
follows. When a bug occurs in a program, the developer generally modifies the
code by removing and/or transforming some source code lines in the program and
runs it to check if the bug still occurs or not. Decan follows a similar process.
Bad performance is considered a bug. Decan performs via binary patching of SSE
memory access instructions for detection of delinquent instructions responsible of
the poor performance. Decan is a fine-grained bottleneck detection tool. Figure 4.1
shows the overall process of Decan.

This figure shows that Decan performs on the most time-consuming region of an
application. This region is identified using the profiling. The profiling can be done

4.2. Overview 59

Figure 4.1: Decremental performance analysis infrastructure (Decan).

automatically using transparent profiling tools such as OProfile [70] and VTune [4]
or manually if the user already has knowledge of the application’s behavior. When
the hot function is detected, then Decan is used to patch instructions in different
combinations:

• all loads at the same time

• all stores at the same time

• all loads-stores at the same time

• one load or one store at a time

• grouping: patch a group of dependent instructions

All these combinations are detailed in Section 4.4.3. These substitutions lead
to the generation of new binaries that are run, and the original binary also, using
the kernel executor that runs the target region in its original execution environment
without running the whole application. These executions are evaluated to determine
the impact of each substitution/patch. The process of patching is described in
Section 4.4 and the automatic kernel execution is presented in Section 4.5.

60 Chapter 4. DECAN: Decremental Performance Analysis Tool

4.3 Motivation

4.3.1 Decoupling semantic from analysis

The general idea of Decan is based on the observation that there is a lot in common
between functional debugging and code optimization. As a matter of fact, code
optimization is often about performance debugging. This is particularly true when
the analyst has to deal with memory behavior, where a single instruction can lead
to dramatic performance variation.

Figure 4.2: Example of a loop that shows a 4K-aliasing problem. Code extracted
from Matvec routine provided by MAGMA Giebereitechnologie GmbH.

Figure 4.2 shows a false dependency between loads of acx(i-1,j,k),
temp(i-1,j,k) and the store of vhilf(i,j,k) leads to the serialization of these
memory accesses. This considerably lengthens the critical path. The purpose of
Decan is to diagnose the source of the problem, not the cause of it. Here we sus-
pect that the false dependency is due to a 4K-aliasing (ie. acx, temp, and vhilf
have the same addresses modulo 4K). Despite their complete independence, these
three instructions are considered by the processor as targeting the same address. In-
deed, on certain architectures and in 64 bits addresses, the processor considers only
the twelve first bits of the address. If two addresses have the same twelve first bits
then the processor considers that these addresses might be the same and serializes
the operations on these addresses. If we consider the following C kernel:

for (i=0 ; i<SIZE ; i++)
a(i) = b(i-offset)

If we have addresses such as:

address(a)%4KB = address(b)%4KB
(the same low 12 bits)

With offset = 1, there is a conflict between the store a(i), at iteration i and
the load b((i+1)-1) at iteration i+1. This is known as the 4K-aliasing problem.

To detect that these three instructions bear a performance problem, Decan
breaks the semantics of the code! Exactly as an engineer trying to understand

4.4. Concept and Infrastructure 61

which assembly instruction is causing the problem, Decan replaces memory in-
structions by nops. A nop, is an assembly instruction that does nothing. In Intel64
architecture, it has different sizes, from 1 byte to 9 bytes and is issued in the P0,
P1, or P5 execution port.

If removing a single instruction leads to an unexpected performance improvement
then this instruction is considered a delinquent instruction. While breaking the
semantics of the code seems dangerous, in practice for a loop body with a control
flow of reasonable complexity, we find this method extremely efficient.

In the case of Matvec, it is difficult to detect the 4K-aliasing problem. Us-
ing Decan with Matvec allows to pinpoint precisely the delinquent instructions.
Figure 4.3 shows the impact on performance of the store instruction. The X axis
corresponds to the number of cycles per iteration and the Y axis corresponds to the
new binaries generated by Decan when patching one memory access or all memory
accesses. One of the main advantages of Decan is to provide an immediate esti-
mation of what can be gained by optimizing the loop body: The difference between
the original binary and the one without any Load/store is 55 cycles minus 22 i.e 33
cycles. The white bar on the top corresponds to the original version. The black bar
on the bottom corresponds to a binary with all load and stores nopped. Each light
transparent gray bar corresponds to a version where a specific load instruction has
been changed in a nop. The white bar with diagonal large stripes corresponds to
the version without any load instructions. The bar with diagonal tight stripes cor-
responds to a version without any store. The transparent light gray bar corresponds
to a version where one store has been transformed into a nop.

The white bar on the top (the long one) corresponds to the performance of the
original Matvec code and the transparent light gray bar at the bottom (the small
one) corresponds to the Matvec code with a nop patched store. Patching the store
provides a speedup of 2. In this case, the store instruction is considered as the
delinquent instruction.

4.3.2 Alteration and preservation

Once a routine has been selected for optimization Decan proceeds to its isolation
(cf. Section 4.5). The isolation mechanism in Decan is based on the alteration
of the execution flow and on the preservation of the run-time context. This means
that, in the first stage, the application is executed but at the first call of the selected
function, the application is stopped, using a gdb break, and its memory is dumped
into a file. In the second stage, still in a fully automated way, the binary of the
application is patched in order that the main function now branches directly to a
loader that loads the dumped memory context and calls the hot function. In Decan,
the alteration of the execution flow answers the first need of reducing the execution
time of the benchmark program, while the preservation of the data context allows
accurate analysis. The details of the technique is given in Section 4.5.

4.4 Concept and Infrastructure

4.4.1 Decan’s algorithm

The key concept of the Decan approach is the automatic identification of sets of
instructions responsible for increased computation latency. It performs this through

62 Chapter 4. DECAN: Decremental Performance Analysis Tool

Figure 4.3: Performance in cycles per iteration when applying the nop transforma-
tion on Matvec subroutine.

systematic modification of individual instruction behavior in the hottest region of a
program.

Algorithm 5 illustrates Decan’s algorithm. Decan focuses on a memory access
instruction patching technique, on regular loops.

Algorithm 5 Decremental Performance Analysis Algorithm.
Require: Binary = The target binary to analyze
Require: Asmfile = The disassembled binary
1: Madras disassembles Binary and generates Asmfile
2: for (each Function in Asmfile) do
3: for (each innermost Loop in Function) do
4: Detect groups of dependent instructions
5: Perform Grouping
6: for (each Instruction in Loop) do
7: if (SSE Instruction and memory access Instruction) then
8: if (Instruction is a Load) then
9: Perform Load patching

10: else
11: //Instruction is a Store
12: Perform Store patching
13: end if
14: end if
15: end for
16: end for
17: end for

4.4. Concept and Infrastructure 63

4.4.2 Instruction detection

Decan performs on the hot routine of an application. It patches the memory access
instructions of the innermost loops of this routine. Decan uses Maqao libcore [41]
to detect the innermost loops in a routine and to iterate on the different instructions
of each loop. When iterating on the loop’s instructions, if a SSE (Streaming SIMD
Extensions) memory instruction is detected, then it is selected for patching.

Figure 4.4 is portion of assembly code that corresponds to two juxtaposed loops
nested in an outer loop. Each loop is a daxpy [104]. If we suppose that this code
corresponds to the most time-consuming region of an application, then Decan
detects the memory access instructions in each of the two juxtaposed loops by using
the Maqao libcore.

Figure 4.4: Portion of assembly code that corresponds to two juxtaposed DAXPY
[104].

4.4.3 Instruction removal

4.4.3.1 How to remove

Madras [100], a multi architecture tool and library which disassembles and patches
ELF executables, is used to patch the binary code. Decan transforms each SSE
(Streaming SIMD Extension) memory access instruction in the set and patches the
binary, using Madras, in the following way: for any kernel containing n SSE mem-
ory instructions Decan generates n versions of the kernel. Each version correspond-
ing to the removal of one of the memory access instruction. Decan also generates 3
additional versions, one without any loads, one without any stores, and one without
any memory instructions. Then Decan generates a last set of versions based on the
grouping policy: memory instructions are then removed by group considering their
base address.

64 Chapter 4. DECAN: Decremental Performance Analysis Tool

Decan detects the SSE memory access instructions and substitutes them with
nop instructions. For this substitution, three rules have to be enforced:

• First, in order to avoid artificial pressure to the targeted instruction execution
port, a single nop instruction has to be generated (and not multiple nops). By
generating a list of nops, the pressure is increased on the ports P0, P1 and P5,
which are the ports targeted by the nop instruction.

• Second, in order to keep instruction alignment unchanged, the size of the nop
has to match exactly the width of the suppressed instructions (this is possible
with the multi-Byte x86 instruction).

• Third, in order to avoid side effects on the cycle count, the latency of the sup-
pressed instruction has to be taken into account. In x86 assembly, it is possible
for an arithmetic instruction to load its operand from memory. Therefore re-
moving the memory access also removes the arithmetic instruction. In the case
of a divide instruction which is 17 cycles, this has an impact on the overall loop
body cycle count. In the current version of Decan presented in this thesis,
this impact is not detected. In a future version, Decan will be able to have
a more precise way of patching. Indeed, the floating-point instructions that
have a memory operand, will be patched in a way that keeps the floating-point
operation but deletes the memory access. For example:

mulsd 4(%rdi),%xmm1
becomes

mulsd %xmm1,%xmm1

4.4.3.2 Illustrating example

Consider the following simple vector addition DAXPY/SAXPY code [104] a stride
of 2 written in C, and its corresponding x86 assembly code produced using the ICC,
to illustrate the decremental performance analysis concept. Similar code exists in
many real industrial applications, mainly in HPC applications based on the linear
algebra codes. Two examples of real-life HPC applications are given in Section 4.6.

B1:
movsd (%rdi,%rax,8),%xmm1
mulsd %xmm0, %xmm1

for (i=0 ; i<size ; i+=2) addsd (%rsi,%rax,8), %xmm1
y[i] += alpha*x[i] movsd %xmm1, (%rsi,%rax,8)

addq $16, %rax
cmpq %r8, %rax
jb B1

Using Madras, Decan detects the SSE memory access instructions and replaces
them with nop instructions. nop instructions with variable length are used to match
the original x86 instruction width [5]. These nop instructions with a size larger than
1 byte may have a register or a memory operand. The patching is performed on the
DAXPY/SAXPY code, as follows:

• Only one SSE memory access instruction is patched (load or store):

4.4. Concept and Infrastructure 65

B1: #One load is patched
nop operand
mulsd %xmm0, %xmm1
addsd (%rsi,%rax,8), %xmm1
movsd %xmm1, (%rsi,%rax,8)
addq $16,%rax
cmpq %r8, %rax
jb B1

B1: #One load is patched
movsd (%rdi,%rax,8),%xmm1
mulsd %xmm0, %xmm1
nop operand
movsd %xmm1, (%rsi,%rax,8)
addq $16,%rax
cmpq %r8, %rax
jb B1

B1: #One store is patched
movsd (%rdi,%rax,8),%xmm1
mulsd %xmm0, %xmm1
addsd (%rsi,%rax,8), %xmm1
nop operand
addq $16, %rax
cmpq %r8, %rax
jb B1

• All the loads are patched to generate a new binary and all the stores are patched to
generate another binary:

B1:
nop operand
mulsd %xmm0, %xmm1
nop operand
movsd %xmm1, (%rsi,%rax,8)
addq $16, %rax
cmpq %r8, %rax
jb B1

B1:
movsd (%rdi,%rax,8),%xmm1
mulsd %xmm0, %xmm1
addsd (%rsi,%rax,8), %xmm1
nop operand
addq $16, %rax
cmpq %r8, %rax
jb B1

• All the loads and stores instructions are patched to generate one binary:

B1:
nop operand
mulsd %xmm0, %xmm1
nop operand
nop operand
addq $16, %rax
cmpq %r8, %rax
jb B1

66 Chapter 4. DECAN: Decremental Performance Analysis Tool

Figure 4.5: Code example to illustrate the concept of grouping. The instructions in
the assembly code with the same color (gray and orange), correspond to an access
to the same source array.

4.4.3.3 Grouping version of patching

Decan generates a set of code versions based on the grouping policy. The idea of performing
the group policy comes from a code that has the following behavior:

B(i) = A(i) + A(i+1)

If we assume that A is coming from the memory, the A(i) generates a miss followed by
a hit with A(i+1). If A(i) is replaced by a nop instruction then A(i+1) generates the hit,
and if A(i+1) is nopped then A(i) generates a hit. This is why replacing both accesses is
more significant.

In Decan, are considered as a group all memory instructions that are accessing to the
same array, that means that these memory instructions are using the same base address.
Patching a group of memory instructions that are considered "dependent" can allow to
pinpoint precisely the bottleneck. Instead of dealing with all the memory instructions, we
deal with a more significant set of memory instructions. Figure 4.5 shows a code example
that illustrates the grouping. The memory access instructions with the same color in the
assembly code correspond to a group of dependent instructions that use the same base
address. That means that they are accessing to the same array, the array has the same
color in the source code. In Section 4.6, we show how grouping is used to pinpoint precisely
the delinquent memory accesses.

4.4.3.4 Performance measurement

The new binaries generated by Decan are measured using the automatic kernel executor.
The performance obtained correspond to the execution time of the hottest routine. The
evaluated performance are divided by the number of iterations of the loop (in the hottest
routine) to display the performance per iteration. The iteration bound of the loop is
determined with value profiling. The performance measurements obtained are gathered in

4.4. Concept and Infrastructure 67

Figure 4.6: FPEC program instrumentor.

a Comma-Separated Values file that contains the name of the binary and its corresponding
performance. The format of the binary name is the following:

file_name = <function_name>_loop<loop_number>_<instruction_type>_
<instruction_offset>_<source_line_number>;

loop_number = sequential number of the loop in the function;
instruction_type = loads (all)| stores (all)|

ld (individual)|st (individual)|
stores_loads (all);

instruction_offset = offset of the instruction in the binary;
source_line_number = number of the source line that corresponds to

the instruction;

For example, in rbgauss_load3_ld_0x402f4c_line80: the load instruction at 0x402f4c
address in loop 3 of rbgauss function has been patched.

4.4.3.5 Error handling

Obviously any version leading to a crash is considered by Decan as an error, and the
version is removed from the set of programs to analyze. Any version with an execution
time larger than the original code is considered as an error (removing instruction should
not increase the execution time), and the version is also removed from the analysis. Also,
another drawback that can occur is the generation of Floating Point Exceptions(FPE) that
are not present in the original binary. Hence, the appearance of new FPE can affect the
execution time. In order to tackle this problem, a small tool to detect and count the FPEs is
needed. This helps us to count FPEs in the original binary and compare it with the number
of FPEs in the generated binaries. The tool allows to detect and count FP exceptions at
binary level, which means that the targeted code doesn’t have to be recompiled. It acts by
instrumenting the binary. For this purpose, it uses Madras. The tool is called FPEC for
Floating-point Exception Counter. It is composed of two components:

• A program instrumentor: Instruments the original binary by adding a function call
at the beginning of the main function (prior to any instruction of the program) and
linking with an external dynamic library as shown in Figure 4.6.

• A dynamic library: Figure 4.7 illustrates the role of the dynamic library. When
called, the added function does the following actions:

– Parse the instrumented binary with Madras and extract of all instructions’
addresses with their respective sizes. These are stored in a static table, in order
to be used later.

– Activate the desired interrupts as initially it depends on compilation directives.

68 Chapter 4. DECAN: Decremental Performance Analysis Tool

Figure 4.7: FPEC dynamic library.

– Replace the default handler with the modified one.

When an FPE is encountered during the execution of the program the new handler is
called and two structures are passed to it : a siginfo_t structure which contains information
about the exception (address, type, etc.), and a ucontext_t structure which contains the
context of the original program (general registers, eflags and RIP) and which is used to
restore the original context. The problem with exceptions is that if we resume execution,
the instruction that causes the FPE is executed again and the exception will be raised
again. We don’t have this kind of problem in the case of Traps for example, if we resume
from a Trap the execution continues with the instruction that follows the one that causes
it. Hence, to avoid iterating indefinitely on the exception we use the table of instructions’
addresses extracted with Madras to get the size of the current instruction (the address to
search is extracted from the RIP field in the ucontext_t structure). Once the correct size
obtained, it is added to the RIP of the ucontext_t structure to jump to the next instruction
when the context of the original program is restored.

The supported exceptions include :

1. Division by zero.

2. Overflow.

3. Underflow.

4. Invalid result.

5. Inexact result.

The number of each type of exception is kept updated each time it is captured in order to
be reported at the end of execution.

4.5 Automatic Kernel Executor

Magee et al. [72] systematically evaluates in SPEC2006 the discrepancy between the
execution time of each benchmark and the individual execution time of its hottest
routine. In the particular case of 433.milc, executing the whole benchmark program
takes 175,000 times more time than executing a single occurrence of its critical routine
(mult_su3_mat_vec).Therefore, if the performance problem can be understood from this
single occurrence a huge amount of time can be saved. In other words, considering that

4.5. Automatic Kernel Executor 69

Figure 4.8: The Automatic Kernel Execution process. It describes the different
steps of the process from memory context dumping to the branch to the loader. The
purpose is to run the target function in its original environment without running
the whole application.

code optimization is an iterative process, the overhead of dealing with the whole applica-
tion instead of focusing on the hot function dramatically reduces the ability to explore the
optimization space.

The automatic kernel executor allows the critical routine in an application to be evalu-
ated without evaluating the whole original application. It automatically patches the binary
of the application so that the main function branches to a loader which executes the routine
in its original execution environment. The automatic kernel execution consists in:

1. Dumping the memory context of the routine

2. Dumping the parameters’ addresses of the routine

3. Building a loader that maps the memory context of the routine and passes the rou-
tine’s parameters to the stack/registers.

4. Patching the application in order to branch directly to the loader and avoid the
execution of the whole application.

The two first steps are performed by a GDB script (GNU debugger) [51] then the
information provided by GDB is used to build the loader and patch the application’s binary.

Figure 4.8 illustrates the process of the automatic kernel execution that consists in
running a target function in its original environment without running the whole application.
The dump of the memory context and the build of the loader are processes done before
running the original application. When the loader is built, then the original application
is executed, and during the execution, the loader patches the binary of the application to
make it jump to a new main function. This new main function loads the dumped memory
context and call the critical routine. The execution ends when the application returns from
the critical routine. The end of the application is not run.

70 Chapter 4. DECAN: Decremental Performance Analysis Tool

4.5.1 The GDB process

The GNU debugger is used to extract useful information about the memory context and
the parameters of the routine. First, we set a breakpoint at the entrance of the perfor-
mance critical routine. To dump the memory context the dump binary memory command
is used. It dumps the memory allocated before starting the routine. According to the
calling convention, a set of registers is dedicated to pass the arguments to the function,
this set is dumped alongside the memory context. Additionally, and still according to the
calling convention, the stack can be used to pass extra-parameters. Consequently, a large
fraction of the stack is also dumped. At the end of the GDB process, the whole execution
environment of the routine is collected. After that, the system maps this memory context
and passes the parameters in order to call the routine. This GDB process is fully scripted
using expect a Unix automation tool for interactive application [68]. The overall process
of automatic kernel extraction is based on shell and expect scripts. This GDB script can
handle both C and Fortran codes and there is no need to have the debug information in
the binary file.

4.5.2 Building the loader

The loader maps the memory context dumped by the GDB process, using the C library
function mmap, and passes the parameters to the hot function in the same way they were
passed in the original application (register and stack parameters passing). Original register
parameters are remapped to the registers, and original stack parameters are set back on the
stack. The loader corresponds to a driver that sets the memory context of the routine, sets
the parameters of the routine and calls it. The last step makes the binary of the application
jump to the loader and runs the critical routine.

4.5.3 Branch to the loader

In this step the purpose is to patch the binary code of the application in order to bypass
the main function and, instead, to directly call our loader. This, in turn, directly calls our
target function. This patching is done by replacing the first bytes of the main by a jump to
the loader.

4.5.4 Conclusion

Considering that code optimization is an iterative process, the overhead of dealing with the
whole application instead of focusing on the hot function dramatically reduces the ability
to explore the optimization space. The Automatic Kernel Executor allows to reduce this
overhead by only running the target function.

One function can be called more than once (ie. several occurrences) in different places
in an application. One should mention, that in the automatic kernel execution process, we
are only handling the first occurrence of the function (ie. the first call). The more-than-
once-called problem is detected but not implemented in our process.

4.6 Decan and Real-Life Applications

In this section, we demonstrate Decan analysis for two real-world industrial applications
from independent software vendors (ISVs): Recom Services [87] and Dassault-Aviation [40,
7].

4.6.1 3D Combustion simulation code

The AIOLOS[87] application provided by RECOM builds a 3D model of industrial-scale fur-
naces, and in particular, helps solve problems due to the corrosion of the walls of such a

4.6. Decan and Real-Life Applications 71

furnace at high temperatures. The most time-consuming subroutine in the Recom appli-
cation is RBgauss, which implements a red-black iterative solver. The RBgauss subroutine
contains two loops, denoted the Red and the Black loop, with communications between
them using MPI. The two loops include:

• A Red loop that updates half of the AM array elements using the other half. It means
that each red element depends on its four immediate black neighbors (Figure 4.9).

• A Black loop has the same structure as the red loop but updates the black elements
with the red ones.

Figure 4.9: The most time-consuming loop in RBgauss. There are 3 different arrays:
AM(2D), and SU(1D) are read-only, PHI(1D) is read and written.

Figure 4.10 shows cycles consumed by the transformed RBgauss for each associated
instruction when using nop instruction by modifying individual or all of the memory ac-
cesses. There are important bars which define the performance range: the white bar which
corresponds to the original binary and the black bar which corresponds to the transformed
binary without any load and store instructions. We can see that removing one memory
access slightly improves the performance (transparent light gray bars) and removing all of
the memory accesses (loads) improves the performance much more (large stripped bar),
achieving the lower-bound of 21 cycles. This lower-bound was estimated statically based on
instruction dispatch, execution port and other micro-architectural features of the processor.
Such static performance estimation is computed by the Maqao tool [41] for Woodcrest,
and Tigerton processors (cf. Chapter 3). Obviously, this performance improvement is due
to less cache misses caused by the loads.

From the performance achieved when removing all the memory accesses, we conclude
that there is a set of memory loads instructions that have a significant impact on per-
formance. All these instructions access the same array AM, the same base address, so we
transformed all the memory accesses in RBgauss that are accessing AM array at the same
time using nops. These results, presented in Figure 4.11, confirm that access to AM array is
the bottleneck in RBgauss.

4.6.2 Iterative solver for the Navier-Stokes equation

The ITRLSOL[40, 7] application, developed by Dassault-aviation, solves the Navier-Stokes
equation, through the use of Computational Fluid Dynamics (CFD), with the help of an

72 Chapter 4. DECAN: Decremental Performance Analysis Tool

Figure 4.10: Performance in cycles per iteration when applying the nop on RBgauss
subroutine. The X axis corresponds to the number of cycles per iteration and the
Y axis corresponds to the different version of binaries generated by Decan when
patching one memory access (load or store) or all the memory accesses (all the loads,
all stores and all the loads/stores).

iterative solver. The most time-consuming subroutine in ITRSOL is EUFLUXm, which im-
plements a sparse matrix-vector product. The EUFLUXm subroutine contains two groups of
quadruply nested loops, Figure 4.12 shows 2 identical quadruply nested loops in each group.

Figure 4.13 shows cycles consumed by the transformed EUFLUXm for each associated
instruction when using nop instructions to modify individual or all of the memory accesses.
In Figure 4.13, the white bar represents the original binary and the black bar represents
the version without any load or store instructions. These define the performance range.
These two experiments define the maximal performance gain which can be obtained by
tuning this specific loop. We can see that removing one memory access slightly improves
the performance as shown by the transparent light gray bars, and removing all of the
memory loads improves the performance much more as illustrated by the large stripped bar,
achieving a lower-bound of 6 cycles, this is confirmed with Maqao. Again, the performance
improvement is due to less cache misses caused by the loads.

These results suggest that there is a set of memory accesses that have a significant effect
on the performance. We transformed all loads that access to the same arrays (ompl and
ompu), leading to access the same base address, this means one base address for ompl and
another for ompu. The results presented in Figure 4.14 show that when modifying this set
of loads the lower-bound is achieved, thus indicating that the access to ompl and ompu is
the bottleneck in EUFLUXm.

4.7 Limitations

Decan is a new approach in performance analysis. It is considered as a fine-grained analysis
tool that pinpoints the delinquent instruction or group of instructions responsible of the
bad performance. Decan, as any tool, has some limitations:

• Dealing with side effects when the instructions are replaced with nop instruction. The

4.7. Limitations 73

Figure 4.11: Performance in cycles per iteration when applying the nop transfor-
mation on a set of instructions accessing to the same base address, on RBgauss
subroutine. The X axis corresponds to the number of cycles and the Y axis to the
original binary, grouping version and all the loads version of binaries.

Figure 4.12: The most time-consuming quadruply nested loop in EUFLUXm. There
are 4 different arrays: vecx(2D), ompu(3D), and ompl(3D) are read-only, vecy (2D)
is read and written.

74 Chapter 4. DECAN: Decremental Performance Analysis Tool

Figure 4.13: Performance in cycles per iteration when applying the nop transforma-
tion on EUFLUXm subroutine. The X axis corresponds to the number of cycles per
iteration and the Y axis corresponds to the different versions binaries generated by
Decan when patching one memory access (load or store) or all the memory accesses
(all the loads, all stores and all the loads/stores).

patching must be done in a more clean and precise way. For example, replace the
SSE memory access instructions with a xor instruction on the same register. This
deletes the memory access and keeps a valid value, zero, in the register.

• Semantics is lost: This is considered as a limitation in some cases when Decan
generate invalid binaries that crashes. However, from a performance point of view,
this is not considered as a limitation.

• Irregular loops: Decan does not handle a loop with a complex control flow in it.
Patching the instruction responsible of the branch may give aberrant behavior.

• Decan is a fine-grained tool that performs on the loop level. It needs to be coupled
with a profiling tool to detect the critical routine to analyze.

4.8 Conclusion

In this chapter we introduce Decan, a tool for automatic decremental performance analysis
to simplify the optimization process and trim down its time consumption. Decan pinpoints
precisely the instruction responsible for a performance anomaly without any prior knowledge
of the architecture by running the transformed code on a given platform. It performs
on small, hot parts of the code to isolate the important instructions for the developer.
Decan substitutes x86 SSE memory access instructions with nops to detect memory access
bottlenecks. Obviously, as for any other destructive methods, in some cases the side effects
of breaking semantics may hinder the optimization.

To conclude, the Decan approach is based on the fact that alleviating the semantics
constraints of a kernel allows a deeper insight of its performance behavior. While this
method is routinely applied to debug assembly code we are not aware of any tool that
systematizes it. Using Decan analysis and further manual optimizations, we achieved

4.8. Conclusion 75

Figure 4.14: Performance in cycles per iteration when applying the nop transfor-
mation on a set of instructions accessing to the same base address, on EUFLUXm
subroutine. The X axis corresponds to the number of cycles and the Y axis to the
original binary, grouping version and all loads version of binaries. Decan allows in
one glance to determine the large room for improvement possible at the load level.

speedups of up to 2.5 times on industrial applications. These results are described in
Chapter 5.

Chapter 5

Approach to Application
Performance Tuning

5.1 Introduction

In high performance computing, there is a constant need for more resources such as CPU,
memory, or I/O. With finite limits on these resources, it is the responsibility of the pro-
grammer, interacting with the compiler, to optimize an application for peak performance.
Optimization consists of gathering data about a program’s behavior, diagnosing the problem
by identifying the resources that are saturated and the costly instructions, and prescribing a
solution which entails applying a change to the code’s algorithm, structure, or data layout.

The first step, which is data collection, involves an array of different analysis techniques
to examine different aspects of application performance. Typically, a code is deemed optimal
if it approaches the peak numerical throughput of the processor; this implies that only an
algorithmic change could further improve performance. Most often, memory system effects
such as the working set, stride, bandwidth, and alignment are the key factors. Once those
are solved, it is important to identify the best instruction scheduling and unrolling factors
to keep the pipeline full and balanced. After a particular resource has been identified as a
bottleneck, it is necessary to characterize the specific cause of the problem by pinpointing
the specific instructions involved and how they are suboptimal. Using this information, it
is finally the responsibility of the programmer to enact a solution.

In practice, this process is extremely tedious because of the difficulty to understand a
program’s behavior and the complexity of modern processors. As a result, many tools and
methodologies exist to analyze a code and guide the optimization. However, the provided
results are essentially raw data, requiring an experienced programmer to perform analysis
and synthesis of the information. Furthermore, many existing methodologies do not cover
the entire process of analysis and perform a subset of the whole analysis. For example, the
analysis can only be static.

Hardware performance monitoring (HPM) can provide great insight into a program’s
performance bottlenecks. However, there are hundreds of performance counters, but only
two at a time can be counted on a Core 2. Arcane event descriptions make most performance
counters useful only for true micro-architecture experts. Given these problems, we have in-
vested significant time into identifying which performance counters are understandable and
correlate well with performance. Using the HPM data, we can identify potential bottlenecks
and move toward pinpointing a region of code that has potential for optimization.

In this chapter, we address optimization of HPC code, specifically CPU- and memory-
bound applications. We describe a semi-automated methodology to analyze performance
and guide the optimization process. Both static analysis (with Maqao and visual inspec-
tion) and dynamic analysis (of memory access) of the code are performed. Information from
this analysis guides us to the regions of code furthest from the peak performance. Using
this information, we introduce a new approach to identify the specific set of instructions
that are responsible for a potential increased computation latency: decremental analysis,
Decan. Decan involves systematically changing instructions’ behavior in a particular re-
gion to identify the runtime contribution of each instruction or set of instructions. Since it
uses static, dynamic, and decremental types of analysis, our semi-automated methodology
is called “balanced”.

This methodology has been applied on two industrial HPC codes: RBgauss from RE-

78 Chapter 5. Approach to Application Performance Tuning

COM Services and ITRLSOL from Dassault-Aviation. Our modifications to the latter code
achieved an improvement in sequential and parallel performance by a factor of 2.

Section 5.2 presents the tools and techniques in our analysis approach. Section 5.3 deals
with two case studies of HPC codes on which the methodology was applied with significant
performance improvement.

5.2 Toward a Better Evaluation Process

The process of performance analysis is a key factor for a good optimization. Having a good
methodology of performance analysis allows to focus the effort in each step of the process
of the performance evaluation and not to lose time in thinking about what to do next.
Spending time to develop a systematic process for performance optimization has a good
return on investment. Indeed, if it takes 5 weeks to optimize a HPC application and to try
at the same time to extract a systematic process to achieve a good optimization, for the
next application to analyze, the period of investigation can take 2 weeks.

A good methodology of performance evaluation is not just a beautiful theoretical con-
cept. It gives a solid and systematic way of work to achieve the bottleneck detection in the
minimum time.

The performance optimization is not always about decreasing the runtime execution.
Sometimes the target can be different. As the energy consumption becomes a very im-
portant feature to target, the performance optimization in that case is to find the best
optimization to reduce the energy consumption. This shows that performance optimization
is a kind of equations that involve several criteria such as the execution time and the power
consumption.

When an application should be optimized for a better execution time, this involves the
execution platform for which the application has to be optimized. In our Maqao static
analysis, a Core 2 performance model has been implemented to evaluate the performance
of an application on a Core 2 platform. However, the plugin framework of Maqao makes
it easy to add new plugin/performance models of the new architectures.

The following performance analysis techniques are intended to identify the root cause
of a performance bottleneck. It is assumed that the targets of optimization are significant
contributors to program execution time as reported by tools such as gprof [53] or Intel
PTU [15].

This section provides a high-level description of each step of the methodology. Figure
5.1 shows a diagram of the flow through the process. This diagram shows the process we
followed to evaluate the performance of two real-life programs.

First, a profiling is performed on the application to detect the hot routine. The 90/10
rule that says that 90% of the execution time is spent in 10% of the code, a portion of
code that will have an impact on performance if it is optimized. When the hot routine
is detected, a Maqao’s static analysis is performed to give a first view about that code
quality. It gives information of the vectorization, the dispatch on the different execution
ports of the architecture and some estimation of the execution time in the different level of
caches of the Core 2 architecture. Then, we go further, by applying Decan and the HPM
simultaneously, to try to understand where precisely is the problem in the code, and which
memory access is responsible of the bad performance. If a bottleneck is not detected than we
can apply again the evaluation process on the new binaries generated by Decan, to extract
further information. At each iteration of the process, we go deeper in the understanding of
the code behavior.

5.2.1 Static analysis using Maqao

Static analysis is a method of program debugging done by examining the code without
executing the program. It provides a comprehension of the structure of the code. The
static analysis gives a view of the quality of the code and is considered as a first step in a
complete software quality-control process.

5.2. Toward a Better Evaluation Process 79

Figure 5.1: Evaluation process diagram.

Automated tools can assist programmers in performing static analysis. The sophistica-
tion of the analysis varies from a tool to another. Some tools perform on the source code,
others on the compiled object code. On another front, some of them consider individual
statements and others deal with the whole code.

In the performance analysis technique presented in this chapter, Maqao [41] performs
a static analysis (cf. chapter 3). It deals with object code and generates different metrics
that quantify the code-quality.

5.2.2 Hardware counters and memory traces

5.2.2.1 Hardware counters

Tools such as Intel’s PTU[15], PerfMon[44], PAPI[80], and others make gathering HPM
information relatively easy. However, even though hundreds of events can be monitored
through hardware counters, most of the counters give information that is either too arcane
or too esoteric to be useful [78]. Moreover, only a few events can be monitored at once on
most processors. For example, on the Intel Core 2 processors, only 2 different configurable
events can be monitored at a given time in most cases and up to 4 events in very particular
cases, such as the monitoring of different variations of a same event. Hence, the first issue
to be solved is to identify a limited set of performance counters which should have the
following characteristics:

• A small number of counters to avoid numerous reruns which are costly in time. This
suppose the program’s behavior is repeatable.

• Detect the source of the problem AND the performance impact: for example the
LOAD_BLOCK.OVERLAP_STORE hardware counter that counts the 4K-aliasing problem,
does not detect the cost of the problem it just detects it. Figure 5.2 illustrates the per-
formance cost detection. It shows the 4K-aliasing problem on the a(i)=b(i-offset)
body loop when varying the offset. We can see a sensible impact up to offset = 10
for the HPM counter and up to offset = 4 for the runtime cost. The hardware counter
detected the problem but not the cost and what we care about is the performance
impact.

• Easy to understand and to correlate with performance. On top of the documenta-
tion problem, performance counters often refer to low level details of the architecture
which are hard to interpret correctly. Understanding the true meaning of many per-
formance counters involves an intimate knowledge of the microarchitecture. Through

80 Chapter 5. Approach to Application Performance Tuning

Figure 5.2: 4K aliasing problem and Hardware Performance Counter on Intel Core
2.

a painstaking exploration process, we have identified a set of counters that we find
to be understandable and correlate well with the performance of our target applica-
tions. The following hardware counters have been identified to be key indicators of
performance for our applications.

The INTEL documentation gives the following definitions for the selected counters:

• L1D_REPL: Counts the number of lines brought into the L1 data cache.

• L2_LINES_IN.SELF.ANY/DEMAND/PREFETCH: Counts the number of
cache lines allocated in the L2 cache. Cache lines are allocated in the L2 cache as
a result of requests from the L1 data and instruction caches and the L2 hardware
prefetchers to cache lines that are missing in the L2 cache. This event can also count
demand requests and L2 hardware prefetch requests together (ANY) or separately
(DEMAND/PREFETCH).

• CPU_CLK_UNHALTED.TOTAL_CYCLES: Counts the total number of
core cycles, while it is running code and while it is halted, as long as it not in a
sleep state.

Various simple assembly kernels have been evaluated using various hardware perfor-
mance counters. The purpose is to select hardware performance counters for understanding
and optimizing memory performance behavior. This is how, the listed hardware counters
have been identified to be indicators of performance.

Work has been done to select hardware performance counters for understanding and
optimizing memory performance behavior. For this purpose, we used various very simple
assembly kernels: simple streaming loads and stores with various constant striding patterns
and different variants essentially varying the unrolling degree. For all of these codes, we
performed two tests using different data set sizes: 512 KB (fitting in the L2) to test the
L1 versus L2 behavior, and 8 MB (exceeding L2 cache size) to test the L2 versus RAM
behavior. For each of these codes, the miss pattern is easily predictable, however clearly

5.3. Experimental Results 81

F1 F2 F3 F4 F5 F6 F7
Maqao X X X - - - -
Decan - - - - X X -

Hardware Performance Monitoring - - - X - - -
Memory Traces - - - - - - X

Table 5.1: The features targeted in our performance evaluation process and the tool
responsible of each feature. F1: Vectorization / F2: Dispersal on execution ports /
F3: Estimation bound in L1, L2, and RAM / F4: Cache misses / F5: Load-Store
impact / F6: 4K-aliasing / F7: Memory access patterns.

the behavior of the hardware prefetchers is unknown and hard to predict accurately. How-
ever, the codes are simple enough so the hardware prefetchers should be triggered. We
monitored systematically various performance counters using PTU [15] and we tried to
correlate performance behavior with the behavior of these various performance counters.
The basic underlying assumption is that if we are unable to understand the behavior of
performance counters on simple load/store kernels, there is little chance that we can use
them efficiently on more complex kernels. This work about the selection of the hardware
performance counters and all the measurements can be found in the deliverable D2.6.1_b
[63], which was done for the ParMA project [7].

5.2.2.2 Memory traces

Binary-level instrumentation is used to collect memory traces to analyze memory access
patterns. The memory traces provide a stride report for targeted instructions. Using
this stride report, for example, instructions with a longer stride than operand size can
be identified as potential performance bottlenecks [24]. An example using this type of
information is given in Section 5.3.

5.2.3 Decremental analysis using Decan

When memory behavior is identified as a problem with a loop, given the imprecise nature of
performance counters, it is often still difficult to know the specific delinquent instructions.
The decremental analysis using Decan is performed to quickly identify such instructions.

Chapter 4 presents the concept as a simple one: first measure the original version of the
code, and then measure a version of code modified by removing one or more expressions
or instructions such as memory access instructions. Once an instruction is removed, the
program is again profiled to account for the contribution of the removed instruction. Timing
differences and deltas in L1 and L2 miss rates indicate an individual instruction’s effect on
a loop’s overall performance.

5.2.4 Tools and targeted features

Table 5.1 lists the different features targeted in our performance evaluation process and
shows which used tool, between the tools used, targets these features or some of them.
This table shows that if we want to target all the features, different tools should be used,
since different tools have different strengths.

5.3 Experimental Results

Here we show how the methodology previously described was applied to real-life applica-
tions. In the remainder of this section, we examine two codes, developed by Recom Services
and Dassault-Aviation.

82 Chapter 5. Approach to Application Performance Tuning

5.3.1 Experimental setup

The experimental platform consists of a computation node equipped with four Xeon X7350
Tigerton. Each Xeon processor is a quad-core chip clocked at 2.93 GHz, equipped with two
4 MB L2 caches, two cores share one L2 cache, and 32 kB L1 data cache, private to each
core. There are 48 GB of RAM available on this node.

The Intel C and Fortran Compilers, icc and ifort v11.0, are used to generate all of our
assembly codes. They also are used to generate OpenMP parallel regions when appropriate.

Intel’s Performance Tuning Utility PTU is used to access hardware counters and perform
part of the dynamic analysis.

5.3.2 3D Combustion simulation code

Brief description The most time consuming subroutine in AIOLOS is RBgauss, which
implements a red-black iterative solver [87]. The RBgauss subroutine contains two loops
(denoted Red and Black) with a communication between them using MPI. Figure 5.3
shows this loop.

Figure 5.3: The most time-consuming loop in RBgauss. There are 3 different arrays:
AM(2D), and SU(1D) are read-only, PHI(1D) is read and written.

Static analysis According to Maqao’s static analysis, there are no vector instructions
SSE instructions generated by ifort. However, looking at the execution port usage report,
it becomes apparent that the main bottleneck is memory accesses, specifically loads from
memory. The P2 port that is dedicated to memory loads, shows a much higher access
number than the other ports.

Looking at the source code, the explanation for not using vector instructions in the
loop is obvious: the AM array is accessed indirectly through the INDINR index array, which
prevents the compiler from knowing whether the data accessed is correctly aligned.

Dynamic analysis As both Red and Black loops are singly-nested loops, the iteration
count and the loop bounds are one and the same for each loop. Memory tracing indicates
that the AM and PHI arrays are accessed with a stride 2 basis, with some gaps from time
to time. As the static analysis shows, the most time consuming operations in this loop are
memory loads. Looking at the source code and loop attribute profiling, it is clear that this
routine is memory-bound. As AM is accessed with a “stride 2” pattern, half of the memory
bandwidth is wasted: only half of the bytes pulled into the cache are actually useful for

5.3. Experimental Results 83

performing computations, doubling the number of cache misses. Looking at performance
counters confirms this.

In a multicore context, dynamic analysis shows a constant amount of L1D and L2 cache
line consumption, independent of the number of threads used. Thus, the amount of cache
misses per thread is constant, but the amount of CPU cycles increases, thus reducing the
overall speedup to 4 with 16 threads. This is mainly due to memory bandwidth limitations
which prevent memory bound programs from getting more than a speedup of four. When
the memory bandwidth limit is reached it is no longer the latency of the memory accesses
that limits the execution speed, but the number of accesses to main memory that the
application causes.

Decremental Analysis Removing the memory access instructions has an impact on
the analysis given by Maqao by decreasing load pressure on port P2. However, since
Maqao cannot distinguish between different strides, its added-value remains limited in
this particular case. Hence, when iterating the dynamic analysis with the modified loop,
memory behaviors become more apparent: accesses to PHI occur almost always in cache,
whereas accesses to AM are always RAM-based. The dynamic analysis is applied after the
decremental analysis to account the effect of the removed instruction. Decan was essential
in this case to identify which memory accesses are causing the contention on the memory
bus. Using Decan with the grouping option allows to pinpoint precisely the blocking
memory access in the RBgauss subroutine. Grouping consists in detecting the memory
access instructions that are accessing to the same base address. This means that these
memory accesses are accessing to the same source array. The group of instructions are
patched at the same time, to see the impact of these accesses.

Optimization Since the major bottleneck for this routine is data access from RAM
combined with a low spatial locality (stride 2 access), various optimizing transformations
were performed, but only the following has a significant impact on performance: reshaping
the array AM by getting rid of the stride 2 access. More precisely, the array AM is split into
two distinct arrays still with indirect access but stride 1. This is equivalent to reshaping
an array of complex numbers by splitting it into arrays, one containing the real part, the
other one containing the imaginary part. Figure 5.4(b) shows the the red loop after the
array reshaping optimization.

As expected, the indirect access still prevents the compiler from generating vector in-
structions. As such, Maqao static analysis is still “blind” to our code transformation.
However, dynamic analysis, and more specifically hardware counter measurements do show
that cache misses are almost half what they used to be. Figure 5.5(b) shows the cache misses
measurement. Figure 5.5(a) shows that the single core performance has been improved by
speedups between 1.2 and 1.3 thanks to this code transformation.

When performing a new dynamic analysis with multiple threads, memory saturation is
still the main problem, but saturation of the memory bus happens much later. Figure 5.6
shows that the performance is improved by speedups between 1.3 and 1.4.

5.3.3 Iterative solver for the Navier-Stokes equation

Brief description The most time-consuming subroutine in ITRLSOL [7, 40] is EUFLUXm,
which implements a sparse matrix-vector product. The EUFLUXm subroutine contains two
groups of quadruply nested loops (2 identical quadruply nested loops in each group) shown
in Figure 5.7.

Static analysis The Maqao vectorization report indicates that no vectorization is
performed, no use of SSE instructions. The loads cannot be vectorized due to the non
unit stride on the two vectors but the multiplications and the additions could have been
vectorized by the compiler. However, the execution port usage report clearly indicates that

84 Chapter 5. Approach to Application Performance Tuning

(a) The most time-consuming loop in RBgauss
before optimization

(b) The most time-consuming loop inRBgauss
after optimization

Figure 5.4: The most time-consuming loop in RBgauss before and after the array
reshaping optimization.

Figure 5.5: Speedup achieved on RBgauss with the AM reshaping optimization on
unicore.

the vectorization of additions and multiplications will improve P0 and P1 ports, which are
the computation units ports, but not the P2 loads port which is the bottleneck.

Dynamic analysis Loop attribute profiling indicates that the main specific feature
in the 4-level-nested-loops is that the two innermost loop bounds (ndof) are quite small
(4 ≤ ndof ≤ 10). The two outermost trip counts are larger and vary throughout execution.

Memory tracing shows that the two innermost loops are accessing all of the arrays along
the wrong dimension (row-wise, which in Fortran is the wrong dimension for a traversal)
leading to poor spatial locality. Moreover, the values of indexes used for accessing the first
dimension of all arrays are not regular and lead to indirect addressing.

Decremental analysis Removing the memory accesses that access the arrays ompl
and ompu shows that when modifying this group of loads the performance are increased,
thus indicating that the access to these two arrays is the bottleneck.

5.3. Experimental Results 85

Figure 5.6: Speedup achieved on RBgauss with the AM reshaping optimizations for
1..4 threads. The gains obtained on unicore scale linearly with the number of cores
in the system.

Figure 5.7: The most time-consuming quadruply nested loop in EUFLUXm. There are
4 different arrays: vecx(2D), ompu(3D), and ompl(3D) are read-only, vecy (2D) is
read and written.

Optimization Since the key performance bottleneck for this routine is poor spatial
locality because of the accesses on the wrong array dimension, various transformations are
performed. Over the various code transformations that are performed on the code, two
have a significant impact on performance: hardwiring ndof and loop interchange.

Value specialization involves replacing a variable whose value is unknown by the com-
piler ndof by its proper value equal to 4, to help the compiler apply optimizations, in
particular for unrolling. The compiler fully unrolls the two innermost loops inside the loop

86 Chapter 5. Approach to Application Performance Tuning

nest. As no SIMD instructions were generated, Maqao static analysis is fooled by the fact
that the innermost loop is not the one it used to be. Hence no direct comparison with the
previous reports can be made, except that, according to Maqao static analysis, no loop
vectorization occurred. A speedup of 1.5 is observed for sequential executions.

The second transformation is done by interchanging the second loop on ig and the two
innermost loops. That means that the ig loop becomes the innermost loop. All of the arrays
are now accessed column-wise (Figure 5.8(b)). The static analysis of this transformation
with Maqao shows that indirect accesses still prevent the compiler from vectorizing the
loop. Statically, there is no information about the transformation. However, dynamic
analysis shows that interchanging loops substantially increased the data traffic into L1 but
drastically improved performance. Because of the data set size, the L2 traffic remains the
same, but the hardware prefetch behavior is vastly improved Figure 5.9(b). Figure 5.9(a)
shows this optimization improves sequential performance by a speedup of 2.5.

(a) The most time-consuming loop in EUFLUXm
before optimization

(b) The most time-consuming loop in EUFLUXm
after optimization

Figure 5.8: The most time-consuming quadruply nested loops in EUFLUXm before
and after loop interchange optimization.

Figure 5.9: Speedup achieved on EUFLUXm with the loop interchange optimization
on unicore.

In a multicore environment the same optimizations are applied. Variable specialization

5.4. Conclusion 87

has an impact on the overall execution of ITRLSOL, but interchanging loops gives even better
results, with a speedup of up to 2.5 This speedup is shown in Figure 5.10.

There is no doubt that improving data locality in a unicore environment has similar
effects on a multicore environment, as the memory bus receives fewer requests. As previously
discussed, speedup for memory-bound applications on the experimental platform cannot be
greater than 4 due to bus saturation. Since the previous experiment was conducted on a
4-thread execution and gave a speedup around 3.5, it was decided to keep the same amount
of threads for ITRSOL.

Figure 5.10: Speedup achieved on Dassault applications the loop interchange op-
timizations for 1..4 threads. The gains obtained on unicore scale linearly with the
number of cores in the system.

5.4 Conclusion

In this chapter, we present a methodology to provide a semi-automatic way of analyzing
and understanding performance issues for high-performance computing applications. This
was done using a combination of different tools: Maqao’s static analysis is used to perform
the first step of the process of evaluation. It gives a first view of the quality of the code
in term of vectorization, execution ports saturation, etc. Then, a dynamic analysis is done
using HPM counters, loop profiling and memory tracing to check cache misses and access
pattern. Finally, Decan and its debug concept is used as a fine-grain tool to pinpoint
precisely the root cause of certain bottlenecks.

Better execution times are achieved for kernels used in real-life applications, with a
speedup of up to 2.5.

This evaluation process, shows that there is no specific performance analysis tool that
solves all the problems. The purpose is to have a good methodology which allows to explore
the different aspects of the target program. For that purpose, no single tool is a panacea.
However, different tools and techniques are useful to detect precisely the bottleneck and to
apply the adequate optimization.

Chapter 6

Conclusion

6.1 Contributions of this thesis

This thesis presents two techniques for performance analysis on binary codes. Several per-
formance analysis tools exist, based on statistical sampling, modelisation, instrumentation,
targeting routines and loops but none of the existing tools targets the instructions directly
or gives an estimation on the degree of vectorization of a loop.

The first contribution of this thesis, in chapter 3, presents Maqao’s static analysis.
The static analysis is considered as the first step in the process of performance evaluation.
It is a fast process that abstracts the dynamic phenomena. It does not take into account
the semantic of the code, since it does not execute the target code and it does not consider
the input dataset. Maqao’s static analysis implements a Core 2 pipeline model, and gives
predictions of how the processor handles instruction stream throughout the pipeline. It
computes performance estimates and evaluates the number cycles needed for the execution
of the innermost loops. For each loop, several metrics are computed to give a cost of
the quality of the code. First, an estimation in cycles of the time spent by the loop in
the front-end is given. The front-end corresponds to the first stages of the pipeline: the
predecoder stage whose purpose is to detect where each instruction begins. The decoder
stage interprets the instructions by decomposing them into micro-operations. Finally, the
reorder-buffer stage where the values of the renamed registers are stored. After the front-
end, an estimate of the number of cycles spent in the back-end is given. It corresponds to
the number of cycles that the loop spent in the execution ports.

After the front-end and the back-end other important estimations about the quality
of the code are computed. A vectorization ratio is calculated to estimate the degree of
vectorization of the loop. Moreover, an important part of the performance model is the
pattern matching done to give an estimation of the performance of the loop in the memory
hierarchy.

The drawback of the Maqao’s static analysis is the known limitation in all static
analysis tool: it does not consider any dynamic phenomena. It computes a lower bound
without taking into account any dynamic behavior.

The second contribution of this thesis is the Decan tool, in chapter 4. Decan is a new
approach for decremental performance analysis. It is a fine-grained performance analysis
tool that target memory access instructions in regular loops. The concept of Decan is
similar to the debug process that every programmer follows. When a bug occurs in a
program, the developer generally modifies the code by removing and/or transforming some
source code lines in the program and runs it to check if the bug still occurs or not. Decan
follows a similar process. Bad performance is considered a bug. Decan perform on SSE
memory instructions. It replaces SSE memory instructions with nop instructions, at the
binary level. This replacement generates a set of modified binaries that are associated to
performance. The replacement is performed in different ways: replace all loads at the same
time, replace all stores at the same time, replace all loads and stores at the same time,
replace just one memory access, or replace a group of dependent instructions.

For the evaluation time of all of these versions of binaries, Decan performs a kernel
execution that allows to run the hot code region within its original execution environment

90 Chapter 6. Conclusion

without running the whole application. Moreover, any new binary version leading to a crash
is considered by Decan as an error, and the version is removed from the set of programs
to analyze. Any version with an execution time larger than the original code is considered
as an error and the version is also removed from the analysis. Also, another drawback that
can occur is the generation of Floating Point Exceptions(FPE) that are not present in the
original binary. Hence, the appearance of new FPE can affect the execution time. In order
to tackle this problem, a small tool to detect and count the FPEs is implemented and used.

The last part of this dissertation shows a performance evaluation process based on
the tools developed in this thesis. It describes a semi-automated methodology to analyze
performance and guide the optimization process. Both static analysis Maqao and Decan
analysis, of memory access, of the code are performed. This process has been performed on
two real-life HPC applications: RBgauss from RECOM Services and EUFLUXm from Dassault-
Aviation. Our modifications achieved a speedup of 1.4 for the RBgauss application, and a
speedup of 2.5 for the EUFLUXm application, both in multicore.

6.2 Future Work

Maqao’s static analysis is based on an implementation of a performance model for Core
2 architecture. The Maqao framework can be extended to target different other archi-
tectures. The actual framework targets the Core 2 architecture but the next step will be
to implement other x86 architectures such as the Nehalem and the Sandy Bridge. As the
performance model for the Core 2 is considered as a plugin in Maqao, it is easy to add new
plugins for new architectures. The main difficulty is in the understanding of the behavior
of these new architectures to add. The better is the understanding, the most accurate the
performance model will be.

Decan as a new concept in performance analysis, opens different research directions.
Decan is actually targeting SSE memory access instructions in regular loop. To

broaden the scope of Decan, loops with control flow can be addressed: in a non-linear
control flow, identifying the particular execution path which triggers the performance prob-
lem is not a trivial task. For instance, such cases can confuse most of the approaches based
on hardware counters. The model proposed by Decan can be extended beyond memory
instructions and address branch instruction as shown in Figure 6.1.

Figure 6.1: Addressing the control flow with Decan.

6.2. Future Work 91

The concept of Decremental Analysis can be extended to go from instructions to threads’
tasks. This parallel decremental analysis can be applied to delete the work of one or several
threads. The purpose is to detect scheduling problem, load balancing, or conflicting data
location, and to know in which thread or group of threads do we have to look. Figure 6.2
illustrates how one, or more, thread’s work can be decanned.

Figure 6.2: Decan on one thread job.

Appendix A

Microbenchmarking on Core 2
and Nehalem

A.1 Microbenchmarks Description

In this section we describe the different kernels (ie. microbenchmarks) we have built. Some
of them correspond to artificial kernels (load/store kernels written on assembly) and others
represent real kernels (DAXPY/Copy kernels).

There are 9 groups of artificial kernels and 12 groups of real kernels. The artificial kernels
have been built with two kinds of assembly instructions: aligned & unaligned instructions:

• Aligned instruction : data must be aligned on a 16-byte boundary.

• Unaligned instruction : data don’t have to be aligned on a 16-byte boundary.

Each group contains 3 levels of unrolling of the kernel : unroll2, unroll4 and unroll8.
Two kinds of unrolling are done (in case of more than 1 vector): vectorized & interleaved.

If the no-unrolled code is X[i]Y[j] then:

• The unrolled code (interleaved) is: X[i]Y[j]..X[i+1]Y[j+1]..X[i+2]Y[j+2]

• The unrolled code (vectorized) is: X[i]X[i+1]X[i+2]..Y[j]Y[j+1]Y[j+2]..

The assembly kernels are:

• artificial kernels

– Lx : one load on vector X

– Sx : one store on vector X

– LxLy : two loads on 2 different vectors (X/Y)

– LxSy : one load and one store on 2 different vectors (X/Y)

– LxLySz : two loads and one store on 3 different vectors (X/Y/Z)

– LyLxSy : one load on vector X and one load/store on vector Y

– LxLyLzSt : three loads and one store on 4 different vectors (X/Y/Z/T)

– LxLySzSt : two loads and two stores on 4 different vectors (X/Y/Z/T)

– LxLyLzStSu : three loads and two stores on 5 different vectors (X/Y/Z/T/U)

• real kernels

– Copy : one load & one store on the same vector.

– DAXPYasm , DAXPY2asm , DAXPY3asm , DAXPY4asm , DAXPY5asm ,
DAXPY6asm

An example of LxSy kernel:

.L4:
movaps 0(%rsi),%xmm2 #load [rsi] (X[i]) in xmm2
movaps %xmm1, 0(%rcx) #store xmm1 in [rcx] (Y[i])

addq $16,%rsi #address increment

94 Appendix A. Microbenchmarking on Core 2 and Nehalem

addq $16,%rcx #address increment
sub $2, %rdi #counter
jg .L4

An example of LxSy kernel unroll 2:

INTERLEAVED VECTORIZED
----------- ----------

.L4: .L4:
movaps 0(%rsi),%xmm2 movaps 0(%rsi),%xmm2
movaps %xmm1, 0(%rcx) movaps 16(%rsi),%xmm3

movaps 16(%rsi),%xmm3 movaps %xmm1, 0(%rcx)
movaps %xmm4, 16(%rcx) movaps %xmm4, 16(%rcx)

addq $32,%rsi addq $32,%rsi
addq $32,%rcx addq $32,%rcx
sub $4, %rdi sub $4, %rdi
jg .L4 jg .L4

An example of a DAXPY2asm kernel:

Y[i] = Y[i] + ALPHA1*X[i] + ALPHA2*Z[i]

.L4:
movaps 0(%rsi),%xmm2 #load [rsi] (X[i]) in xmm2
mulpd %xmm0, %xmm2 #xmm2*=xmm0 (alpha1*X[i] in xmm2)
addpd 0(%rcx),%xmm2 #xmm2+=[rcx] (xmm2+=alpha1*X[i])
movaps 0(%rdx),%xmm3 #load [rdx] (Z[i]) in xmm3
mulpd %xmm1,%xmm3 #xmm3*=xmm1 (alpha2*Z[i] in xmm3)
addpd %xmm3,%xmm2 #xmm2+=xmm3 (xmm2+=alpha2*Z[i])
movaps %xmm2,0(%rcx) #store xmm2 in Y[i]

addq $16,%rsi #address increment
addq $16,%rdx #address increment
addq $16,%rcx #address increment
sub $2, %rdi #counter
jg .L4

The C kernels are:

• DAXPY2c : a[i] += x1*b[i] + x2*c[i]

• DAXPY3c : a[i] += x1*b[i] + x2*c[i] + x3*d[i]

• DAXPY4c : a[i] += x1*b[i] + x2*c[i] + x3*d[i] + x4*e[i]

• DAXPY5c : a[i] += x1*b[i] + x2*c[i] + x3*d[i] + x4*e[i] + x5*f[i]

• DAXPY6c : a[i] += x1*b[i] + x2*c[i] + x3*d[i] + x4*e[i] + x5*f[i] + x6*g[i]

An example of DAXPY2c kernel:

for (i=0 ; i<N ; i++){
A[i] = A[i] + alpha1*B[i] + alpha2*C[i];

}

An example of DAXPY4c kernel:

for (i=0 ; i<N ; i++){
A[i] = A[i] + alpha1*B[i] + alpha2*C[i] + alpha3*D[i] + alpha4*E[i];

}

A.2. Methodology Description 95

A.2 Methodology Description

In this section, we describe our methodology of the experimentation.

A.2.1 Assembly Kernels

We measured our assembly kernels in two INTEL architectures : Core 2 & Nehalem.

• Our measures are focused on the different levels of cache.

• The different codes have been measured thanks to a microbenchmarking framework.

• Different alignments have been measured.

The purpose is to analyze the behavior (unrolling impact) of ARTIFICIAL kernels on
the target architecture on the different levels of cache (L1/L2 for CORE 2 - L1/L2/L3 for
NEHALEM).

In our assembly kernels, we are using SSE instructions (2*64 bits = 128 bits). No unroll
= 128 bits Unroll2 = 2 * 128 bits Unroll4 = 4 * 128 bits Unroll8 = 8 * 128 bits

A.2.2 C Kernels

The purpose with these different C versions of DAXPY is to force the compiler to ALIGN
data so we can have the best performance for these codes on the focused architecture.

The command used is (Intel C Compiler 11.0):

icc -S -O3 -align tested-kernel

A.3 Results Description

In the different tables we present, the columns represent:

• UNR: UNRoll

• ’2/4/8’ + ’I/V’: Unroll_Factor + Interleaved/Vectorized

• best : the best performance for the current kernel –> MIN(UNR 2I,UNR 2V,UNR
4I,UNR 4V,UNR 8I,UNR 8V)

• NO_UNRO / best: the profit obtained with the unrolling

• 2I / 8I: the profit obtained when we unroll 8 times (Interleaved form)

The results represent number of cycles per iteration in case of -level-cache- data (data fit
in L1, L2 & RAM).

96 Appendix A. Microbenchmarking on Core 2 and Nehalem

A.3.1 The performance with aligned instructions in assembly ker-
nels

Each measurement given corresponds to the best measurement we obtained for the aligned
code.

A.3.1.1 Cache level 1

Core 2

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 0.55 0.55 0.55 0.55 1.01 1.01
Sx 0.57 0.56 0.56 0.57 1.02 0.98

LxLy 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.00 1.00
LxSy 1.05 0.56 0.56 0.56 0.59 0.63 0.68 1.88 0.88

LxLySz 1.11 1.11 1.11 1.10 1.10 1.11 1.11 1.02 0.99
LxLySx 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.00 1.00
LxLyLzSt 1.62 1.61 1.62 1.61 1.61 1.64 1.64 1.00 0.99
LxLySzSt 1.62 1.21 1.39 1.25 1.38 1.42 1.54 1.35 0.85

LxLyLzStSu 1.64 1.63 1.63 1.62 1.62 1.96 1.84 1.01 0.83
COPY 1.06 0.57 0.57 0.57 0.58 0.56 0.64 1.89 1.02
DAXPY 1.45 1.06 1.05 1.06 1.05 1.05 1.05 1.38 1.01

DAXPY2asm 2.13 1.75 1.69 1.70 1.67 1.77 1.87 1.27 0.99
DAXPY3asm 2.88 2.39 2.32 2.34 2.25 2.34 2.48 1.28 1.02
DAXPY4asm 3.73 3.30 3.16 3.13 3.14 1.19
DAXPY5asm 4.31 3.99 3.96 3.74 3.95 1.15
DAXPY6asm 5.66 4.91 4.72 1.20
DAXPY2c 2.85
DAXPY3c 4.09
DAXPY4c 6.33
DAXPY5c 7.93
DAXPY6c 9.71

We can notice that when the unrolling level is increased, it is profitable with less
than 5%. In most of cases, unroll2 is enough.

A.3. Results Description 97

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.04 0.54 0.53 0.54 1.94 1.01
Sx 1.04 0.54 0.54 0.53 1.97 1.03

LxLy 1.51 1.03 1.03 1.03 1.03 1.04 1.04 1.46 0.99
LxSy 1.53 0.79 0.79 0.55 0.66 0.54 0.54 2.84 1.46

LxLySz 1.56 1.08 1.08 1.08 1.08 1.09 1.09 1.45 0.99
LxLySx 1.53 1.04 1.04 1.03 1.03 1.04 1.04 1.48 1.00
LxLyLzSt 2.06 1.80 1.58 1.59 1.59 1.62 1.62 1.30 1.11
LxLySzSt 2.08 2.02 1.80 1.09 1.09 1.22 1.19 1.91 1.65

LxLyLzStSu 2.12 2.07 1.85 1.61 1.61 1.64 1.64 1.32 1.27
COPY 1.49 0.78 0.79 0.55 0.55 0.54 0.54 2.77 1.45
DAXPY 1.55 1.05 1.05 1.05 1.05 1.04 1.04 1.49 1.01

DAXPY2asm 2.11 1.61 1.61 1.58 1.63 1.61 1.80 1.33 1.00
DAXPY3asm 2.87 2.45 2.37 2.15 2.17 2.17 2.46 1.33 1.12
DAXPY4asm 3.62 2.97 2.96 2.86 2.88 1.27
DAXPY5asm 4.15 3.66 3.66 3.52 3.66 1.18
DAXPY6asm 4.67 4.43 4.19 1.12
DAXPY2c 1.83
DAXPY3c 2.35
DAXPY4c 3.24
DAXPY5c 3.67
DAXPY6c 4.17

For all codes, the unrolling is profitable with more than 10%. The unroll2 and unroll4 are
enough to reach the best performance. The unroll8 gives the best performance in case of
codes with many Loads than Stores.

98 Appendix A. Microbenchmarking on Core 2 and Nehalem

A.3.1.2 Cache level 2

Core 2

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.18 1.16 1.18 1.10 1.07 1.05
Sx 1.22 1.22 1.22 1.22 1.00 1.00

LxLy 2.09 2.11 2.10 2.11 2.00 2.05 1.94 1.08 1.03
LxSy 1.82 1.82 1.82 1.81 1.81 1.82 1.80 1.01 1.00

LxLySz 2.72 2.72 2.74 2.71 2.73 2.60 2.54 1.07 1.05
LxLySx 2.24 2.26 2.21 2.25 2.16 2.19 2.08 1.08 1.03
LxLyLzSt 3.60 3.59 3.62 3.62 3.69 3.52 3.57 1.02 1.02
LxLySzSt 4.20 4.15 3.88 4.19 3.60 4.21 3.66 1.17 0.99

LxLyLzStSu 4.81 4.79 4.66 4.79 4.59 4.82 4.46 1.08 0.99
COPY 1.82 1.81 1.81 1.81 1.80 1.81 1.80 1.01 1.00
DAXPY 2.26 2.25 2.22 2.24 2.17 2.19 2.10 1.07 1.03

DAXPY2asm 3.18 3.17 3.14 3.16 3.03 3.05 2.94 1.08 1.04
DAXPY3asm 3.90 3.98 3.96 3.97 3.95 3.89 3.71 1.05 1.02
DAXPY4asm 4.77 4.87 4.87 4.87 5.01 1.00
DAXPY5asm 5.73 5.76 5.71 5.80 5.70 1.00
DAXPY6asm 6.79 6.60 6.51 1.04
DAXPY2c 3.67
DAXPY3c 4.97
DAXPY4c 6.89
DAXPY5c 8.77
DAXPY6c 10.90

In most of cases, unrolling is not profitable and the unroll8 provokes a loss of performance.

A.3. Results Description 99

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.05 1.04 1.03 0.85 1.23 1.22
Sx 1.01 0.83 0.83 0.82 1.22 1.00

LxLy 1.69 1.55 1.53 1.69 1.51 1.50 1.50 1.12 1.03
LxSy 1.49 1.28 1.28 1.24 1.26 1.29 1.31 1.20 0.99

LxLySz 2.04 1.99 2.00 2.05 2.02 2.04 2.08 1.03 0.97
LxLySx 1.85 1.86 1.78 1.87 1.67 1.62 1.71 1.14 1.15
LxLyLzSt 3.09 2.76 2.79 2.74 2.92 2.75 2.89 1.13 1.00
LxLySzSt 2.82 2.94 2.76 3.07 2.57 2.80 2.63 1.10 1.05

LxLyLzStSu 3.38 3.56 3.20 3.59 3.27 3.34 3.35 1.06 1.06
COPY 1.50 1.30 1.23 1.27 1.27 1.28 1.29 1.21 1.01
DAXPY 1.79 1.75 1.74 1.81 1.67 1.56 1.56 1.15 1.12

DAXPY2asm 2.35 2.28 2.27 2.33 2.31 2.29 2.27 1.03 1.00
DAXPY3asm 3.02 3.01 2.96 3.03 3.03 3.03 2.89 1.04 0.99
DAXPY4asm 4.13 3.78 3.76 3.84 3.78 1.10
DAXPY5asm 4.74 4.64 4.57 4.71 4.61 1.04
DAXPY6asm 5.80 5.43 5.51 1.07
DAXPY2c 2.23
DAXPY3c 3.11
DAXPY4c 3.83
DAXPY5c 4.79
DAXPY6c 5.77

The unrolling is more profitable than in the Core 2 architecture. The unroll8 reaches
the best performance for the Load_kernels.

100 Appendix A. Microbenchmarking on Core 2 and Nehalem

A.3.1.3 Cache level 3

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.12 1.12 1.12 1.05 1.07 1.07
Sx 1.21 1.21 1.21 1.21 1.00 1.00

LxLy 1.98 1.97 1.96 1.96 1.93 1.88 1.88 1.06 1.04
LxSy 2.04 1.95 1.95 1.94 1.94 1.94 1.95 1.05 1.00

LxLySz 2.96 2.94 2.94 2.94 2.93 2.85 2.83 1.05 1.03
LxLySx 2.49 2.47 2.47 2.48 2.44 2.33 2.29 1.09 1.06
LxLyLzSt 3.87 3.82 3.82 3.82 3.83 3.67 3.66 1.06 1.04
LxLySzSt 5.37 5.38 5.28 5.37 3.90 5.40 3.90 1.38 1.00

LxLyLzStSu 5.87 5.86 5.69 5.85 4.76 5.85 4.71 1.25 1.00
COPY 2.03 1.95 1.95 1.94 1.94 1.94 1.95 1.05 1.00
DAXPY 2.53 2.50 2.49 2.50 2.45 2.32 2.29 1.11 1.07

DAXPY2asm 3.38 3.31 3.31 3.34 3.30 3.10 3.10 1.09 1.07
DAXPY3asm 4.20 4.14 4.12 4.16 4.13 3.90 3.89 1.08 1.06
DAXPY4asm 5.09 4.95 4.90 5.06 4.93 1.04
DAXPY5asm 5.94 6.53 5.75 5.83 5.70 1.04
DAXPY6asm 6.88 6.75 6.62 1.04
DAXPY2c 3.36
DAXPY3c 4.19
DAXPY4c 5.02
DAXPY5c 5.99
DAXPY6c 6.83

A.3. Results Description 101

A.3.1.4 RAM

Core 2

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 3.92 3.97 3.97 3.96 1.00 1.00
Sx 8.72 8.71 8.71 8.71 1.00 1.00

LxLy 7.25 7.25 7.26 7.27 7.25 7.26 7.38 1.00 1.00
LxSy 10.87 10.85 10.81 10.81 10.82 10.85 10.82 1.01 1.00

LxLySz 13.28 13.17 13.10 13.18 13.21 13.20 13.24 1.01 1.00
LxLySx 11.03 10.97 10.98 10.99 10.97 11.00 11.01 1.01 1.00
LxLyLzSt 16.76 16.74 16.67 16.73 16.59 16.68 16.57 1.01 1.00
LxLySzSt 20.75 20.77 20.78 20.80 20.71 20.81 20.84 1.00 1.00

LxLyLzStSu 23.54 23.43 23.48 23.51 23.24 23.52 23.39 1.01 1.00
COPY 10.85 10.84 10.82 10.84 10.82 10.81 10.82 1.00 1.00
DAXPY 11.13 10.94 10.97 10.94 10.99 10.97 11.04 1.02 1.00

DAXPY2asm 13.81 13.58 13.58 13.55 13.60 13.68 13.77 1.02 0.99
DAXPY3asm 17.32 17.20 17.09 17.05 16.76 16.98 16.87 1.03 1.01
DAXPY4asm 21.73 21.70 21.63 21.79 21.25 1.02
DAXPY5asm 26.64 27.09 26.72 27.18 26.73 1.00
DAXPY6asm 34.49 32.97 32.70 1.05
DAXPY2c 13.80
DAXPY3c 17.41
DAXPY4c 23.13
DAXPY5c 29.02
DAXPY6c 35.38
The unrolling has no effect. It is covered by the memory access.

102 Appendix A. Microbenchmarking on Core 2 and Nehalem

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 2.06 1.71 1.71 1.66 1.25 1.03
Sx 2.58 2.54 2.57 2.60 1.02 0.98

LxLy 3.54 3.52 3.50 3.44 3.45 3.49 3.50 1.03 1.01
LxSy 5.20 4.84 4.73 4.70 4.69 4.70 4.68 1.11 1.03

LxLySz 6.86 6.80 6.78 6.63 6.59 6.63 6.78 1.04 1.02
LxLySx 5.00 5.25 4.76 4.76 4.77 4.90 4.75 1.05 1.07
LxLyLzSt 8.91 8.88 8.67 8.64 8.66 8.55 8.58 1.04 1.04
LxLySzSt 9.96 9.96 10.26 11.54 9.85 10.32 9.79 1.02 0.96

LxLyLzStSu 12.08 12.38 11.98 13.98 12.36 12.04 13.00 1.01 1.03
COPY 4.74 4.70 4.70 4.71 4.71 4.68 4.83 1.01 1.00
DAXPY 5.05 4.86 5.01 5.01 4.98 4.95 4.92 1.04 0.98

DAXPY2asm 6.49 6.24 6.29 6.17 6.18 6.18 6.23 1.05 1.01
DAXPY3asm 8.57 8.62 8.60 8.86 8.61 8.59 8.51 1.01 1.00
DAXPY4asm 10.84 14.79 11.16 11.13 10.74 1.01
DAXPY5asm 13.01 12.85 12.89 12.91 12.84 1.01
DAXPY6asm 15.05 14.93 14.95 1.01
DAXPY2c 7.02
DAXPY3c 9.08
DAXPY4c 10.82
DAXPY5c 12.86
DAXPY6c 15.50

The unrolling has no effect. It is covered by the memory access.
Synthesis: we can notice that the impact of the unrolling decreases with the cache

levels. It is overlapped by the memory(cache) access. CORE 2 vs NEHALEM: the unrolling
has more effect on NEHALEM than on CORE 2.

A.3. Results Description 103

A.3.2 The performance with unaligned instructions in assembly
kernels

Each measurement given corresponds to the best measurement we obtained for the un-
aligned code.

A.3.2.1 Cache level 1

Core 2

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.05 1.05 1.05 1.05 1.00 1.00
Sx 2.54 2.30 2.17 2.11 1.21 1.09

LxLy 2.05 2.05 2.05 2.05 2.05 2.06 2.06 1.00 1.00
LxSy 3.04 2.80 2.80 2.67 2.79 2.61 2.68 1.17 1.07

LxLySz 4.10 3.60 3.85 3.35 3.47 3.27 3.35 1.26 1.10
LxLySx 3.55 3.30 3.55 3.17 3.30 3.12 3.19 1.14 1.06
LxLyLzSt 5.11 4.35 4.36 3.98 3.99 3.86 4.26 1.32 1.13
LxLySzSt 6.10 5.61 5.85 5.37 5.50 5.33 5.40 1.15 1.05

LxLyLzStSu 7.12 6.37 6.37 6.01 6.02 5.91 6.32 1.20 1.08
COPY 3.05 2.80 2.80 2.67 2.80 2.61 2.68 1.17 1.07
DAXPY 1.86 1.56 1.56 1.56 1.56 1.55 1.55 1.20 1.00

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.04 0.69 0.69 0.69 1.51 0.99
Sx 1.04 0.78 0.78 0.77 1.34 1.01

LxLy 1.52 1.29 1.29 1.29 1.29 1.30 1.30 1.18 0.99
LxSy 1.49 0.82 0.82 0.80 0.80 0.80 0.79 1.88 1.04

LxLySz 1.57 1.32 1.32 1.32 1.32 1.36 1.36 1.19 0.97
LxLySx 1.53 1.30 1.30 1.30 1.30 1.31 1.31 1.18 0.99
LxLyLzSt 2.09 2.08 2.08 2.10 1.97 2.13 2.04 1.06 0.98
LxLySzSt 2.08 2.03 1.81 1.56 1.57 1.70 1.63 1.33 1.20

LxLyLzStSu 2.12 2.09 2.09 2.11 1.98 2.20 2.13 1.07 0.95
COPY 1.50 0.83 0.82 0.80 0.81 0.79 0.80 1.90 1.04
DAXPY 1.60 1.19 1.18 1.18 1.17 1.17 1.17 1.37 1.01

A.3.2.2 Cache level 2

Core 2

104 Appendix A. Microbenchmarking on Core 2 and Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.91 1.89 1.89 1.81 1.05 1.04
Sx 2.51 2.26 2.13 2.07 1.21 1.09

LxLy 3.37 3.34 3.32 3.36 2.67 3.24 3.16 1.27 1.03
LxSy 3.01 2.76 2.76 2.65 2.76 2.60 2.64 1.16 1.06

LxLySz 4.02 3.94 3.71 3.98 3.67 3.93 4.07 1.10 1.00
LxLySx 3.71 3.77 3.77 3.78 3.38 3.76 3.89 1.10 1.00
LxLyLzSt 5.06 5.14 4.88 5.14 4.70 5.12 5.66 1.08 1.00
LxLySzSt 6.01 5.52 5.76 5.62 5.40 5.82 5.59 1.11 0.95

LxLyLzStSu 7.07 6.61 6.46 6.60 5.96 6.58 8.09 1.19 1.00
COPY 3.01 2.79 2.76 2.65 2.76 2.62 2.64 1.15 1.06
DAXPY 2.82 2.80 2.79 2.79 2.73 2.62 2.54 1.11 1.07

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.17 1.17 1.17 0.94 1.24 1.24
Sx 1.01 0.84 0.84 0.84 1.20 1.00

LxLy 1.91 1.86 1.83 1.89 1.89 1.73 1.56 1.23 1.08
LxSy 1.52 1.39 1.42 1.39 1.40 1.39 1.39 1.09 1.00

LxLySz 2.28 2.28 2.28 2.28 2.28 2.26 2.26 1.01 1.01
LxLySx 2.17 2.04 2.02 2.10 2.01 1.83 1.81 1.20 1.12
LxLyLzSt 3.04 3.03 3.03 3.03 3.08 3.02 3.04 1.01 1.00
LxLySzSt 5.17 5.13 4.83 5.07 4.50 5.01 1.97 2.62 1.02

LxLyLzStSu 5.40 5.19 4.99 5.17 4.92 5.30 3.92 1.38 0.98
COPY 1.52 1.44 1.39 1.38 1.39 1.38 1.39 1.10 1.04
DAXPY 1.94 1.84 1.83 1.94 1.81 1.60 1.58 1.22 1.15

A.3.2.3 Cache level 3

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.28 1.27 1.27 1.11 1.15 1.15
Sx 1.22 1.21 1.21 1.22 1.00 1.00

LxLy 2.19 2.15 2.14 2.15 2.16 1.94 1.94 1.13 1.10
LxSy 2.18 2.11 2.11 2.11 2.11 2.08 2.08 1.05 1.02

LxLySz 3.24 3.20 3.20 3.20 3.22 3.02 3.04 1.07 1.06
LxLySx 2.72 2.69 2.67 2.70 2.67 2.53 2.52 1.08 1.06
LxLyLzSt 4.21 4.14 4.17 4.16 4.26 3.90 3.97 1.08 1.06
LxLySzSt 6.67 6.67 6.51 6.66 6.28 6.75 2.44 2.73 0.99

LxLyLzStSu 7.21 7.19 7.06 7.21 6.87 7.29 5.94 1.21 0.99
COPY 2.18 2.11 2.11 2.11 2.11 2.08 2.08 1.05 1.01
DAXPY 2.59 2.57 2.56 2.57 2.53 2.39 2.37 1.09 1.07

A.3.2.4 RAM

Core 2

A.3. Results Description 105

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 4.22 4.22 4.21 4.24 1.00 0.99
Sx 8.79 8.79 8.79 8.79 1.00 1.00

LxLy 7.80 7.84 7.84 7.85 7.82 7.99 8.04 1.00 0.98
LxSy 11.35 11.30 11.32 11.32 11.32 11.37 11.32 1.01 0.99

LxLySz 14.27 14.32 14.23 14.29 14.33 14.29 14.76 1.00 1.00
LxLySx 11.61 11.51 11.53 11.53 11.54 11.80 12.02 1.01 0.98
LxLyLzSt 18.46 18.91 18.92 18.32 18.29 18.13 18.92 1.02 1.04
LxLySzSt 21.72 21.95 22.27 21.88 22.32 21.95 16.90 1.28 1.00

LxLyLzStSu 25.43 26.38 26.32 26.11 26.54 25.93 26.34 1.00 1.02
COPY 11.34 11.31 11.36 11.31 11.26 11.39 11.34 1.01 0.99
DAXPY 11.17 11.12 11.08 11.13 11.17 11.15 11.26 1.01 1.00

Nehalem

NO UNR UNR UNR UNR UNR UNR NO UNR/ 2I/
UNR 2I 2V 4I 4V 8I 8V best 8I

Lx 1.61 1.80 1.58 1.45 1.11 1.24
Sx 1.81 1.84 1.73 1.78 1.05 1.03

LxLy 3.58 3.52 3.63 3.56 3.60 3.54 3.47 1.03 0.99
LxSy 5.97 4.65 4.64 4.63 5.76 4.62 4.73 1.29 1.00

LxLySz 6.36 6.16 6.18 6.20 6.19 6.19 6.09 1.04 0.99
LxLySx 4.78 4.71 4.72 4.70 4.86 4.69 4.85 1.02 1.00
LxLyLzSt 8.62 8.67 8.49 8.74 8.75 8.48 8.73 1.02 1.02
LxLySzSt 10.15 10.41 10.37 10.49 10.34 10.09 5.02 2.02 1.03

LxLyLzStSu 12.54 12.55 12.55 12.11 12.47 12.53 12.46 1.04 1.00
COPY 4.76 4.64 4.59 4.62 4.75 4.75 4.75 1.04 0.98
DAXPY 5.00 4.96 4.80 4.78 4.78 4.75 4.85 1.05 1.04

A.3.3 The performance measurements in C kernels

In this section we will give some remarks about our compilation of the DAXPY kernels
with -align option and ivdep/vector aligned pragmas.

Compilation with ICC 11.0 and -align option:
The -align option has no effect on the kernels. The assembly code generated still

contains unaligned instructions.
DAXPY2 and DAXPY3 : packed instructions are used.
DAXPY4, DAXPY5 and DAXPY 6 : no packed instructions used.
Compilation with ivdep/vector aligned pragmas:
The ivdep pragma instructs the compiler the ignore vector dependencies so the code

is vectorized : movsd/movhpd for load & movaps for stores.
The vector aligned pragma instructs the compiler to use aligned data so the movsd/-

movhpd instructions used for loads are changed to movaps.

A.3.3.1 The performance measurements without pragma unroll

In these tests, no pragma UNROLL and no pragma NOUNROLL are used.

Core 2

106 Appendix A. Microbenchmarking on Core 2 and Nehalem

L1 L2 RAM
DAXPY2c 2.21 3.08 13.50
DAXPY3c 3.10 3.93 17.00
DAXPY4c 4.25 4.74 21.57
DAXPY5c 4.17 5.69 26.96
DAXPY6c 5.81 6.54 33.07

Nehalem

L1 L2 L3 RAM
DAXPY2c 1.83 2.23 3.36 7.02
DAXPY3c 2.35 3.11 4.19 9.08
DAXPY4c 3.24 3.83 5.02 10.82
DAXPY5c 3.67 4.79 5.99 12.86
DAXPY6c 4.17 5.77 6.83 15.50

A.3.3.2 The performance measurements with pragma unroll

The pragma UNROLL is used in the case of unroll 2/4/8 and pragma NOUNROLL is used
for the no unroll case (we force the compiler not to unroll).

A/ Core 2
Cache level 1

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 2.24 2.21 2.21 2.15
DAXPY3c 3.08 3.10 3.10 3.15
DAXPY4c 3.65 4.25 4.25 4.19
DAXPY5c 4.17 4.90 5.23 5.09
DAXPY6c 5.81 6.05 6.17 6.17

Cache level 2

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 3.09 3.08 3.08 2.93
DAXPY3c 3.94 3.93 3.93 3.73
DAXPY4c 4.74 4.74 4.75 4.65
DAXPY5c 5.70 5.73 5.78 5.60
DAXPY6c 6.54 6.62 6.70 6.46

RAM

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 13.95 13.61 13.51 13.59
DAXPY3c 17.32 16.96 16.99 16.98
DAXPY4c 21.74 21.56 21.57 21.44
DAXPY5c 27.09 26.97 27.00 26.91
DAXPY6c 32.98 33.18 33.50 33.28

B/ Nehalem
Cache level 1

A.3. Results Description 107

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 2.10 1.83 1.83 1.87
DAXPY3c 2.62 2.36 2.35 2.53
DAXPY4c 3.15 3.25 3.25 3.24
DAXPY5c 3.67 3.65 3.83 4.01
DAXPY6c 4.17 4.18 4.42 4.44

Cache level 2

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 2.31 2.33 2.33 2.29
DAXPY3c 3.03 3.03 3.04 3.04
DAXPY4c 3.91 3.91 4.00 3.77
DAXPY5c 4.71 4.76 4.65 4.63
DAXPY6c 5.90 5.58 5.80 5.33

Cache level 3

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 3.41 3.36 3.36 3.11
DAXPY3c 4.24 4.18 4.20 3.95
DAXPY4c 5.05 5.01 5.03 4.79
DAXPY5c 6.62 5.90 6.74 5.73
DAXPY6c 7.58 6.80 6.81 6.54

RAM

NO UNR UNR 2 UNR 4 UNR 8
DAXPY2c 6.83 6.79 6.76 6.67
DAXPY3c 8.98 8.66 8.71 8.95
DAXPY4c 11.24 10.65 10.75 10.65
DAXPY5c 13.58 12.89 13.42 15.19
DAXPY6c 14.98 14.95 15.42 14.92

C/ Conclusion The pragma NOUNROLL is respected by the compiler. This pragma
forces the compiler not to unroll and the compiler does. The pragma UNROLL has no
effect on the code.

Bibliography

[1] Acumem. http://www.roguewave.com/. 29

[2] Core microarchitecture. http://en.wikipedia.org/wiki/Core_
%28microarchitecture%29. xii, 40

[3] Dyninst: An application program interface (api) for runtime code generation. http:
//www.dyninst.org/. 28, 29, 35

[4] Intel VTune: software performance analyzer for x86-based machines. http://www.
intel.com/software/products/vtune. 31, 35, 57, 59

[5] Intel(R) 64 and IA-32 Architectures Software Developer’s Manual. Volume 2B: In-
struction Set Reference. http://www.intel.com/Assets/PDF/manual/253666.pdf,
http://www.intel.com/Assets/PDF/manual/253667.pdf. 64

[6] Lua. http://www.lua.org. 36

[7] ParMA: Parallel programming for multi-core architectures - ITEA2 project (06015).
http://www.parma-itea2.org. xii, 51, 53, 54, 70, 71, 81, 83

[8] PGAS: Partitioned global address space. http://pgas.org. 29

[9] PIN: a dynamic binary instrumentation tool. http://www.pintool.org. 35

[10] Valgrind: instrumentation framework for building dynamic analysis tools. http:
//www.valgrind.org. 31, 57

[11] Vampir. http://www.vampir.eu. 28

[12] Likwid: Like i know what i am doing, 2011. http://code.google.com/p/likwid/.
27

[13] M. Abrash. Graphics Programming Black. Chapter 21. Morgan Kaufmann, 2007. 14

[14] A. Aggarwal. Energy efficient asymmetrically ported register files. pages 2–7, 2003.
17

[15] A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, and D. Ryabtsev.
Parallelization made easier with intel performance-tuning utility, 2007. 31, 35, 78, 79,
81

[16] S. Almeida. Neural branch prediction. 2006. 20

[17] AMD. Amd64 architecture programmers manual volume 4 : 128-bit media instruc-
tions. http://support.amd.com/us/Processor_TechDocs/26568.pdf, 2007. 3

[18] AMD. Amd64 architecture programmers manual volume 1 : Application program-
ming. http://support.amd.com/us/Processor_TechDocs/24592.pdf, 2009. 3

[19] AMD. Amd64 architecture programmers manual volume 3 : General purpose and sys-
tem instructions. http://support.amd.com/us/Processor_TechDocs/24594.pdf,
2009. 3

[20] AMD. Amd64 architecture programmers manual volume 5 : 64-bit media and
x87 floatingpoint instructions. http://support.amd.com/us/Processor_TechDocs/
26569.pdf, 2009. 3

[21] AMD. Amd64 architecture programmers manual volume 6 : 128-bit and 256-bit xop
and fma4 instructions. http://support.amd.com/us/Embedded_TechDocs/43479.
pdf, 2009. 3

[22] AMD. Amd64 architecture programmers manual volume 2 : System programming.
http://support.amd.com/us/Processor_TechDocs/24593.pdf, 2010. 3

http://www.roguewave.com/
http://en.wikipedia.org/wiki/Core_%28microarchitecture%29
http://en.wikipedia.org/wiki/Core_%28microarchitecture%29
http://www.dyninst.org/
http://www.dyninst.org/
http://www.intel.com/software/products/vtune
http://www.intel.com/software/products/vtune
http://www.intel.com/Assets/PDF/manual/253666.pdf
http://www.intel.com/Assets/PDF/manual/253667.pdf
http://www.lua.org
http://www.parma-itea2.org
http://pgas.org
http://www.pintool.org
http://www.valgrind.org
http://www.valgrind.org
http://www.vampir.eu
http://code.google.com/p/likwid/
http://support.amd.com/us/Processor_TechDocs/26568.pdf
http://support.amd.com/us/Processor_TechDocs/24592.pdf
http://support.amd.com/us/Processor_TechDocs/24594.pdf
http://support.amd.com/us/Processor_TechDocs/26569.pdf
http://support.amd.com/us/Processor_TechDocs/26569.pdf
http://support.amd.com/us/Embedded_TechDocs/43479.pdf
http://support.amd.com/us/Embedded_TechDocs/43479.pdf
http://support.amd.com/us/Processor_TechDocs/24593.pdf

110 Bibliography

[23] J.-L. Baer. Microprocessor Architecture : From Simple Pipelines to Chip Multipro-
cessors. Cambridge, 2010. 12

[24] D. Barthou, A. C. Rubial, W. Jalby, S. Koliai, and C. Valensi. Performance tuning of
x86 openmp codes with maqao. In Parallel Tools Workshop, pages 95—113, Dresden,
Germany, Sept. 2009. Springer-Verlag. vii, 40, 41, 43, 45, 47, 49, 56, 81

[25] K. Beyls. The processor-memory gap: Cache remapping and related techniques, 2000.
4

[26] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou. Iterative compilation
in a non-linear optimisation space. In Proceedings of the Workshop on Profile and
Feedback Directed Compilation, 1998. 57

[27] U. Bondhugula and J. Ramanujam. P.: Pluto: A practical and fully automatic
polyhedral program optimization system. In Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation (PLDI 08), 2008.
6

[28] B. Buck and J. K. Hollingsworth. An api for runtime code patching. The International
Journal of High Performance Computing Applications, 14:317–329, 2000. 28

[29] C. Burstedde, O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox, and
S. Zhong. Scalable adaptive mantle convection simulation on petascale supercomput-
ers. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08,
pages 62:1–62:15, Piscataway, NJ, USA, 2008. IEEE Press. 25

[30] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and J. Browne.
Perfexpert: An easy-to-use performance diagnosis tool for hpc applications. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC,
USA, 2010. IEEE Computer Society. xi, 23, 24, 25, 26

[31] J. F. Cantin and M. D. Hill. Cache performance for spec cpu2000 benchmarks, 2003.
xi, 7

[32] C. Carvalho. The gap btween processor and memory speeds. In Proceedings of IEEE
International Conference on Control and Automation, 2002. 4

[33] I.-H. Chung and J. K. Hollingsworth. Automated cluster-based web service per-
formance tuning. In Proceedings of the 13th IEEE International Symposium on High
Performance Distributed Computing, pages 36–44, Washington, DC, USA, 2004. IEEE
Computer Society. 29

[34] K. Cooper, P. Schielke, and D. Subramanian. Optimizing for reduced code space
using genetic algorithms. In Proceedings of the Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 1–9, 1999. 57

[35] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm,
2001. 39

[36] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth. Active harmony: towards auto-
mated performance tuning. In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, Supercomputing ’02, pages 1–11, Los Alamitos, CA, USA, 2002.
IEEE Computer Society Press. 29

[37] D.C.Burger and T.M.Austin. The simplescalar tool set, version 2.0. 25(3), 1997. 57

[38] M. R. de Alba and D. R. Kaeli. Path-based hardware loop prediction, 2002. 20

[39] D. J. Department. Fast path-based neural branch prediction, 2003. 20

[40] Q. V. Dinh, A. Naïm, and G. Petit. Projet fame2: rapport final de synthèse sur
l’optimisation des logiciels de simulation numérique de l’aéronautique. Technical re-
port, Dassault Aviation, 2007. xii, 51, 53, 54, 70, 71, 83

Bibliography 111

[41] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W. Jalby.
Exploring Application Performance: a New Tool For a Static/Dynamic Approach.
Santa Fe, NM, Oct. 2005. 35, 63, 71, 79

[42] U. Drepper. What every programmer should know about memory, 1997. xi, 4, 5, 6,
9, 10

[43] K. Driesen and U. Hölzle. Accurate indirect branch prediction. In Proceedings of
the 25th annual international symposium on Computer architecture, ISCA ’98, pages
167–178, Washington, DC, USA, 1998. IEEE Computer Society. 20

[44] S. Eranian. Perfmon2: a flexible performance monitoring for linux, 2006. 79

[45] K. I. Farkas, N. P. Jouppi, and P. Chow. Register file design considerations in dy-
namically scheduled processors. In In Proceedings of the Second IEEE Symposium on
High-Performance Computer Architecture, pages 40–51, 1995. 17

[46] P. Feautrier. Parametric integer programming. Operations Research, 22(3):243–268,
1988. 6

[47] P. Feautrier. Automatic parallelization in the polytope model. In Laboratoire PRiSM,
Université des Versailles St-Quentin en Yvelines, 45, avenue des États-Unis, F-78035
Versailles Cedex, pages 79–103. Springer-Verlag, 1996. 6

[48] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn. Interaction cost and shotgun
profiling. ACM Trans. Archit. Code Optim., 1(3):272–304, 2004. 57

[49] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs. an op-
timization guide for assembly programmers and compiler makers, 2011.
http://www.agner.org/optimize/. 15, 16, 17, 19, 40, 43, 44, 47

[50] GCC: the gnu compiler collection, 2011. http://gcc.gnu.org/. 36

[51] GDB: The gnu project debugger, 1986. http://www.gnu.org/sotware/gdb. 69

[52] S. Graham, P. Kessler, and M. McKusick. GProf: a call graph execution profiler.
In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, pages
120–126, June 1982. 57

[53] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execution
profiler. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN symposium on Compiler
construction, pages 120–126, New York, NY, USA, 1982. ACM. 78

[54] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 2007. 12

[55] Intel Itanium Architecture Software Developer’s Manual.
http://developer.intel.com/design/itanium/manuals/iiasdmanual.htm, 2010. 36

[56] IBM. IBM and motorola. Powerpc microprocessor family : The programmers ref-
erence guide. https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/
852569B20050FF778525699600741775, 1995. 3

[57] IBM. IBM powerpc 970fx risc microprocessor, 2005. 3

[58] Intel. Intel64 and IA-32 architectures optimization reference manual.
http://www.intel.com/Assets/PDF/manual/248966.pdf, 2010. 3

[59] Intel. Intel64 and IA-32 architectures softwares developper manual, instruction set
reference a-m. http://www.intel.com/Assets/PDF/manual/248966.pdf, 2010. 3

[60] Intel. Intel64 and IA-32 architectures softwares developper manual, instruction set
reference n-z. http://www.intel.com/Assets/PDF/manual/248966.pdf, 2010. 3, 11

[61] Intel. Intel64 and IA-32 architectures softwares developper’s manual, basic architec-
ture. http://www.intel.com/Assets/PDF/manual/248966.pdf, 2010. 3, 36

https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775

112 Bibliography

[62] Intel Compilers and Libraries - Intel Software Network. http://software.intel.com/en-
us/articles/intel-compilers/, 2011. 36

[63] M. Ivascot, W. Jalby, S. Koliai, and S. Zuckerman. Deliverable 2.6.1_b: Prototype
of optimization tool for multithreaded codes: Identifying key performance counters.
Technical report, University of Versailles, France, 2009. http://www.parma-itea2.
org. 81

[64] W. Jalby, C. Lemuet, and X. L. Pasteur. A New Set of Microbenchmarks to Explore
Memory System Performance for Scientific Computing, 2004. International Journal
of High Performance Computing Applications. 48

[65] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons, 2001. 20

[66] S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang, and W. Jalby.
A balanced approach to application performance tuning. In LCPC, pages 111–125,
2009. vii, 40, 41, 43, 45, 47, 49, 56

[67] A. Lakshminarayanan and S. Shriraghavan. Introduction: Neural branch prediction,
2004. 20

[68] D. Libes. Exploring Expect: A Tcl-based toolkit for automating interactive programs,
1994. 70

[69] K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, F. Juelich, R. Rivenburgh, C. Ras-
mussen, and B. Mohr. A tool framework for static and dynamic analysis of object-
oriented software with templates. In Proceedings of the 2000 ACM/IEEE conference
on Supercomputing (CDROM), Supercomputing ’00, Washington, DC, USA, 2000.
IEEE Computer Society. 28

[70] Link-OProfile. OProfile: system-wide profiler for Linux systems, capable of profiling
all running code at low overhead. http://oprofile.sourceforge.net. 57, 59

[71] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 190–200, June
2005. 29, 57

[72] J. Magee, Q. Yi, and R. C. Whaley. Automated Timer Generation for Empirical
Tuning. In The 4th Workshop on Statistical and Machine learning approaches to
ARchitecture and compilaTion (SMART), Pisa, January 2010. 68

[73] J. Mellor-Crummey. Hpctoolkit: performance tools for scientific computing. 24, 57

[74] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L.
Karavanic, K. Kunchithapadam, and T. Newhall. The paradyn parallel performance
measurement tool. Computer, 28:37–46, November 1995. 29

[75] B. Mohr and F. Wolf. Kojak - a tool set for automatic performance analysis of parallel
programs. In Euro-Par, pages 1301–1304. Springer-Verlag, 2003. 29

[76] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying potential paral-
lelism via loop-centric profiling. In Proceedings of the 2007 International Conference
on Computing Frontiers, May 2007. xi, 29, 30

[77] T. Moseley, D. Grunwald, D. A. Connors, R. Ramanujam, V. Tovinkere, and R. Peri.
Loopprof: Dynamic techniques for loop detection and profiling. In Proceedings of
the 2006 Workshop on Binary Instrumentation and Applications (WBIA) held in
conjunction with ASPLOS-12, October 2006. 29

[78] T. Moseley, N. Vachharajani, and W. Jalby. Hardware performance monitoring for
the rest of us. 2009. 79

http://www.parma-itea2.org
http://www.parma-itea2.org
http://oprofile.sourceforge.net

Bibliography 113

[79] T. C. Mowry. Tolerating latency in multiprocessors through compiler-inserted
prefetching. ACM Trans. Comput. Syst., 16:55–92, February 1998. 11

[80] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to hardware
performance counters. In In Proceedings of the Department of Defense HPCMP Users
Group Conference, pages 7–10, 1999. 57, 79

[81] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997. 39

[82] J. Noudohouenou and W. Jalby. Prediction of the best unroll factor using static per-
formance characterization. Technical report, Exascale Computing Research Center,
Versailles, France, 2011. 51

[83] N. Park, B. Hong, and V. K. Prasanna. Tiling, block data layout, and memory hier-
archy performance. IEEE Transactions on Parallel and Distributed Systems, 14:2003,
2003. 6

[84] V. Pillet, V. Pillet, J. Labarta, T. Cortes, T. Cortes, S. Girona, S. Girona, and
D. D. D. Computadors. Paraver: A tool to visualize and analyze parallel code.
Technical report, In WoTUG-18, 1995. 28

[85] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes. Cambridge University Press, Cambridge, 1986. xvii, 51, 52

[86] X. Qian, H. Huang, Z. Duan, J. Zhang, N. Yuan, Y. Zhou, H. Zhang, H. Cui, and
D. Fan. Optimized register renaming scheme for stack-based x86 operations. In
Proceedings of the 20th international conference on Architecture of computing systems,
ARCS’07, pages 43–56, Berlin, Heidelberg, 2007. Springer-Verlag. 16

[87] B. Risio, N. Passmann, F. Wessel, and E. Reinartz. 3d-flame modelling in power plant
applications. In Proceedings of the High-Performance-Computing on Vector Systems,
2008. xii, 51, 53, 70, 82

[88] R. Schreiber, J. J. Dongarra, R. Schreiber, J. J. Dongarra, and J. J. D. T. Automatic
blocking of nested loops, 1990. 6

[89] S. Shende, A. Malony, S. Moore, P. Mucci, and J. Dongarra. Integrated tool capabil-
ities for performance instrumentation and measurement. 2007. 27, 57

[90] S. S. Shende and A. D. Malony. The tau parallel performance system. The Interna-
tional Journal of High Performance Computing Applications, 20:287–331, 2006. xi,
27, 28

[91] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing
large scale program behavior. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2002. 57

[92] S. W. Son, M. Kandemir, M. Karakoy, and D. Chakrabarti. A compiler-directed
data prefetching scheme for chip multiprocessors. In Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel programming, PPoPP
’09, pages 209–218, New York, NY, USA, 2009. ACM. 11

[93] The Standard Performance Evaluation Corporation. http://www.specbench.org.
30

[94] B. Strong. A Look Inside Intel: The COre (Nehalem) Microarchitecture, 2008. www.
cs.utexas.edu/users/cart/arch/beeman.ppt. xii, 46

[95] H.-H. Su, M. Billingsley, and A. D. George. Parallel performance wizard: A perfor-
mance system for the analysis of partitioned global-address-space applications. Int.
J. High Perform. Comput. Appl., 24:485–510, November 2010. 29

[96] S. Thoziyoor and N. Muralimanohar. Cacti 5.0, 2007. 11

http://www.specbench.org
www.cs.utexas.edu/users/cart/arch/beeman.ppt
www.cs.utexas.edu/users/cart/arch/beeman.ppt

114 Bibliography

[97] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM
journal, 1967. 16

[98] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August. Compiler
optimization-space exploration. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO), pages 204–215, 2003. 57

[99] T. Uliel. Intel architecture code analyzer. http://software.intel.com/en-us/
articles/intel-architecture-code-analyzer/, 2010. xi, 22, 23

[100] C. Valensi and D. Barthou. MADRAS: Multi-Architecture Disassembler and Re-
assembler. http://maqao.prism.uvsq.fr/wiki/wiki/MadrasDownload, 2009. 36, 37,
63

[101] L. N. Vintan. Towards a high performance neural branch predictor. In In Proceedings
of the International Joint Conference on Neural Networks, pages 868–873, 1999. 20

[102] Z. Wang and L. R. B. A novel cache architecture with enhanced performance and
security. In Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 41, pages 83–93, Washington, DC, USA, 2008. IEEE
Computer Society. 10

[103] R. Whaley and J. Dongarra. Automatically tuned linear algebra software. In Pro-
ceedings of the Conference on High Performance Networking and Computing, 1998.
57

[104] H. A. Wijshoff. Implementing sparse BLAS primitives on concurrent/vector proces-
sors: a case study. Technical Report no. 843, Center for Supercomputing Research
and Development, University of Illinios, 1989. xii, 46, 63, 64

[105] Wikipedia. http://support.amd.com/us/Processor_TechDocs/24593.pdf. xi, 7

[106] F. Wolf, B. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger, M. Geimer, M.-A.
Hermanns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi. Usage of the SCALASCA
Toolset for Scalable Performance Analysis of Large-Scale Parallel Applications. In
Proc. of the 2nd HLRS Parallel Tools Workshop, pages 157–167, Stuttgart, Germany,
July 2008. Springer. ISBN 978-3-540-68561-6. 35

[107] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch
prediction. In In Proceedings of the 19th Annual International Symposium on Com-
puter Architecture, pages 124–134, 1992. 20

http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
http://support.amd.com/us/Processor_TechDocs/24593.pdf

	Introduction
	Contributions
	Organization

	Computer Evolution and Performance Analysis
	Context
	Memory Wall
	Caches: implementation and behavior
	Cache prefetching
	Conclusion

	Microarchitecture Complexity
	Instruction pipeline
	Out-of-order execution
	Branch prediction
	Loop Stream Detection
	Conclusion

	Compiler impact
	Performance Analysis Tools
	Introduction
	Static profiling
	Dynamic profiling

	Comparison of tools
	Conclusion

	MAQAO Static Analysis Tool
	Introduction
	Maqao Framework
	Code Restructuring
	Call graph
	Control flow graph
	Data dependence graph
	Loop detection

	Performance Model BCJKV09,KZOIM09
	The Core 2 microarchitecture
	Predecoding
	Decoding
	Reorder-buffer-read stage
	Back-end
	Vectorization ratios
	Performance prediction
	Others metrics

	Maqao's Static Analysis on Numerical Recipes
	Maqao's Static Analysis on Real-Life Applications
	3D Combustion simulation code
	Iterative solver for the Navier-Stokes equation

	Search for accuracy
	Limitations
	Conclusion

	DECAN: Decremental Performance Analysis Tool
	Introduction
	Overview
	Motivation
	Decoupling semantic from analysis
	Alteration and preservation

	Concept and Infrastructure
	Decan's algorithm
	Instruction detection
	Instruction removal

	Automatic Kernel Executor
	The GDB process
	Building the loader
	Branch to the loader
	Conclusion

	Decan and Real-Life Applications
	3D Combustion simulation code
	Iterative solver for the Navier-Stokes equation

	Limitations
	Conclusion

	Approach to Application Performance Tuning
	Introduction
	Toward a Better Evaluation Process
	Static analysis using Maqao
	Hardware counters and memory traces
	Decremental analysis using Decan
	Tools and targeted features

	Experimental Results
	Experimental setup
	3D Combustion simulation code
	Iterative solver for the Navier-Stokes equation

	Conclusion

	Conclusion
	Contributions of this thesis
	Future Work

	Appendix
	Microbenchmarking on Core 2 and Nehalem
	Microbenchmarks Description
	Methodology Description
	Assembly Kernels
	C Kernels

	Results Description
	The performance with aligned instructions in assembly kernels
	The performance with unaligned instructions in assembly kernels
	The performance measurements in C kernels

	Bibliography

