
Université de Versailles Saint-Quentin-en-Yvelines École Doctorale “STV”

Une approche générique pour la définition de
composants bas niveau d’analyse binaire

multi-architecture

A generic approach to the definition of low-level
components for multi-architecture binary

analysis

THÈSE

présentée et soutenue publiquement le 02 Juillet 2014

pour l’obtention du

Doctorat de l’Université de Versailles Saint-Quentin-en-Yvelines
(spécialité informatique)

par

Cédric Valensi

Composition du jury

Directeur de thèse : William Jalby - Professeur, Université de Versailles

Président : Denis Barthou - Professeur, Université de Bordeaux

Rapporteurs : François Bodin - Professeur, Université de Rennes
Henri-Pierre Charles - Chercheur, CEA

Examinateur : Jean-Christophe Beyler - Ingénieur expert, Intel

Remerciements

Voici à présent 6 ans que j’ai quitté le monde de l’entreprise pour rejoindre celui de
la recherche. Après 5 années de thèse, me voici enfin arrivé à l’importante étape des
remerciements, point d’orgue de la rédaction du manuscrit.

Je tiens à exprimer en tout premier ma reconnaissance à mon directeur de thèse
M. William Jalby qui m’a accepté dans son équipe d’abord comme ingénieur de
recherche puis en tant que thésard.

Je remercie ensuite mes rapporteurs, MM. Henri-Pierre Charles et François
Bodin, pour leurs relectures de mon manuscrit et leurs précieux conseils.

Je remercie également le Président du jury Denis Barthou pour m’avoir fourni
les problématiques initiales de ma thèse et m’avoir conseillé tout au long de celle-ci.
Je remercie Jean-Christophe Beyler pour avoir accepté de faire partie de mon jury
de soutenance, ainsi que pour son soutien lorsque nous travaillions ensemble au sein
du laboratoire Exascale.

Je remercie également pour leur encadrement les chefs successifs des équipes
auxquelles j’ai appartenu, Jean-Thomas Acquaviva pour ses conseils et ses encour-
agements, et Andrés Charif-Rubial pour m’avoir poussé à ajouter de nouvelles fonc-
tionnalités sur Madras, même au prix de nuits blanches.

Je remercie aussi les membres de l’équipe d’analyse des performances pour leur
collaboration, en particulier les 3 ingénieurs de recherche qui ont eu chacun à porter
une part du fardeau qu’est la maintenance du code de Madras et Minjag: Mathieu
Tribalat, qui a réécrit le code du parseur ELF et affronté les 2000 lignes de la
fonction scn_reorder, Jean-Baptiste Le Reste qui a eu à résoudre les problématiques
plus complexes que prévu du patch statique et les sournoises GNU_IFUNC, et
Hugo Bolloré, qui s’occupe de la mise à jour des grammaires binaires et des macros
d’assemblages et de désassemblage, et a du plonger dans les méandres des règles de
codage ARM, ou plutôt ses exceptions.

Je remercie tous les autres membres du laboratoire pour avoir supporté mes
plaintes de plus en plus fréquentes au fur et à mesure que la thèse avançait ainsi
pour les discussions autour de la machine à café et au Restaurant Universitaire (sur
l’utilité de la thèse et la qualité de la nourriture dans le cas de Franck).

Une mention particulière à tous mes confrères et consœurs thésard(e)s, aussi bien
pour leur accueil lors de mon arrivée pour les plus anciens que pour leur soutien
mutuel; celles et ceux qui sont depuis devenus Docteurs, Souad (que je remercie au
passage pour son modèle LaTeX de thèse), Stéphane, Julien, Emmanuel, José, Hafid,
Yuriyi, Sylvain; et celles et ceux qui le seront bientôt, Sébastien, Jean-Baptiste,
Asma, Zakariah, Aurèle, Nicolas, Vincent, Michel : bon courage à vous tous.

Je tiens aussi à remercier M. de Feraudy qui m’a conseillé lorsque j’ai décidé de
rejoindre le monde de la recherche et m’a recommandé auprès de William Jalby.

Je remercie tous mes amis pour leur patience lorsqu’ils tentaient eux aussi de
comprendre quel était exactement mon sujet de thèse et combien de temps j’allais
encore y travailler et quand j’annulais mes rendez-vous au dernier moment pour
cause de thèse (mention spéciale au Groupe du Jeu Dit, qui m’a laissé déserter la
scène pour m’occuper de mon manuscrit).

Enfin, je tiens à remercier mes parents, pour leur soutien sans faille tout au long
de la thèse, et mon frère Flavien, pour m’avoir initialement motivé à rejoindre la
recherche par la visite de son laboratoire meublé d’appareils dignes d’un savant fou,
puis pour m’avoir fourni les contacts nécessaires pour faire de ce projet une réalité.

ii

À mes parents et mon frère

iii

Résumé :

L’analyse de performance d’applications pour systèmes hétérogènes requiert
de pouvoir gérer la diversité des architectures impliquées. L’analyse des appli-
cations au niveau binaire offre une précision optimale mais implique l’utilisation
de désassembleurs et patcheurs. Ces outils doivent être capables de supporter les
fréquentes évolutions et la variété des architectures impliquées dans ces systèmes.
La plupart des désassembleurs et assembleurs utilisent une représentation hard-
codée des architectures supportées, dont la maintenance est source d’erreurs et
consommatrice de temps.

Cette thèse propose une méthode permettant la description des jeux
d’instructions des architectures suivant le formalisme des grammaires. Cette ap-
proche permet de simplifier la mise en œuvre des encodeurs et décodeurs pour les
nouvelles architectures et leurs mises à jours ultérieures. La représentation sous
forme de grammaire permet aussi une adaptabilité optimale de la sortie des dé-
codeurs.

Cette théorie est ensuite validée par la mise en œuvre d’un désassembleur basé
sur l’analyseur syntaxique généré. Nous montrons que ce désassembleur répond
aux besoins des outils d’analyse en permettant le support d’architectures multiples
et en présentant les résultats sous un format unifié. Les tests ont montré que ce
désassembleur générique est comparable en terme de vitesse et de précision aux
outils hard-codés.

Nous présentons ensuite une application des résultats du désassemblage sous
forme d’un outil de réécriture binaire. Cet outil utilise un assembleur basé sur
l’encodeur généré depuis la représentation de la grammaire et permet d’effectuer
des opérations de patch bas niveau sur les fichiers binaires. Les tests ont montré
que l’instrumentation de codes basée sur ce patcheur permet d’obtenir un coût en
temps réduit par rapport aux outils existants.

Le désassembleur et le patcheur sont fonctionnels et intégrés dans l’outil
Madras qui est un élément essentiel de l’environnement Maqao.

Mots clés : Désassemblage, Décomposition analytique, Grammaires non
contextuelles, Automates à états finis, Analyse de performances, Réécriture binaire

iv

Abstract:

Performance analysis of applications running on heterogeneous systems requires
the ability to handle the diversity of those architectures. Analysing applications at
the binary level offers a better accuracy but implies the use of disassemblers and
patchers. These tools must be able to follow the frequent evolutions and variety of
the architectures involved in those systems. Most disassemblers and assemblers use
a hard coded representation of the supported architectures, which is error-prone
and time-consuming to maintain.

This thesis proposes a method for describing architectures instruction sets based
on a grammar formalism. This approach allows to simplify the implementation
of encoder and decoders for new architectures and their subsequent updates. The
grammar representation also offers optimal customisation of the decoders outputs.

This theory is then validated with the implementation of a disassembler based
on the generated parser. We show that this disassembler meets the needs of analysis
tools by supporting multiple architectures and presenting its results under a unified
format. Tests show that this generic disassembler is comparable to existing hard
coded tools in terms of speed and accuracy.

We then present an application of the results of the disassembler under the
form of a binary rewriting tool. This tool uses an assembler based on the encoder
generated from the grammar representation and allows to perform low-level patching
operations on binary files. Tests have shown that code instrumentation based on
this patcher allows to obtain a reduced overhead compared to existing tools.

The disassembler and patcher are functional and integrated into the Madras
tool which is an essential element of the analysis framework Maqao.

Keywords: Disassembly, Parsing, Context-free grammars, Finite State Au-
tomata, Performance Analysis, Binary rewriting

Contents

1 Introduction 1
1.1 Contribution . 3
1.2 Organisation . 3

2 Elements of binary analysis 5
2.1 Analysis tools . 5

2.1.1 Common operations . 5
2.1.2 Additional constraints . 5
2.1.3 Operating at the binary level 6

2.2 Assembly language . 6
2.2.1 Binary encoding . 7
2.2.2 Execution . 7
2.2.3 Addressing . 8
2.2.4 Overview of different architectures 8

2.3 Binary executable . 11
2.3.1 General structure . 12
2.3.2 Contents . 12
2.3.3 Common binary formats . 14

3 Generation of a generic binary decoder and encoder 19
3.1 Parsers and architecture representation 19

3.1.1 Parsers . 20
3.1.2 Related work . 21

3.2 Parsing challenges . 23
3.2.1 Constraints on grammar . 23
3.2.2 Architecture specific challenges 24
3.2.3 Additional information . 25

3.3 Representation using a grammar formalism 25
3.3.1 Concepts . 25
3.3.2 FSA building algorithm . 27
3.3.3 Parsing algorithm . 31
3.3.4 Extended FSA building algorithm 32

3.4 Minjag . 38
3.4.1 Specificities of the Intel architectures 38
3.4.2 Specificities of the ARM architectures 40
3.4.3 Assembler generation . 40
3.4.4 Grammar checks and debugging 41
3.4.5 Exhaustive tests of architecture representation 42

3.5 Conclusion . 43

4 Disassembly of binary files 45
4.1 Disassembly challenges . 46

4.1.1 Interleaved foreign bytes . 46
4.1.2 Obfuscated code . 47
4.1.3 Self rewriting code . 48

vi Contents

4.1.4 Overlapping instructions . 48
4.1.5 Output format . 49

4.2 Disassembling principles and related work 49
4.2.1 Disassembly methods . 49
4.2.2 Existing disassemblers . 51

4.3 Performing disassembly . 54
4.3.1 Disassembly errors . 55
4.3.2 Disassembler output . 57

4.4 Madras disassembler . 58
4.4.1 Inner workings . 58
4.4.2 Parallel disassembly . 60
4.4.3 Use in Maqao . 61

4.5 Disassembler performance . 61
4.5.1 Testing context . 62
4.5.2 Disassembly speed . 63
4.5.3 Accuracy . 67

4.6 Conclusion . 69

5 Patching executables 71
5.1 Challenges of patching . 71

5.1.1 Preservation of the control flow 72
5.1.2 Preservation of the data context 74
5.1.3 Handling dependencies of inserted code 75

5.2 Methods and tools for instrumentation 75
5.2.1 Compiler-based instrumentation 76
5.2.2 Dynamic patching . 76
5.2.3 Simulation . 77
5.2.4 Code displacement . 77
5.2.5 Patching tools . 78

5.3 Binary rewriting using code displacement 81
5.3.1 Conventions . 81
5.3.2 Code displacement . 81
5.3.3 Preserving the data environment 85

5.4 The Madras patcher . 85
5.4.1 Main features . 86
5.4.2 Customisable behaviour . 87
5.4.3 Inner workings . 88
5.4.4 Limitations . 89
5.4.5 Use in Maqao . 89
5.4.6 Use by Decan . 90

5.5 Conclusion . 91

6 Extensions for Madras and Minjag 93
6.1 Optimising disassembly performance 93

6.1.1 Optimising disassembly speed 93
6.1.2 Optimising disassembly accuracy 97

6.2 New architectures . 98
6.2.1 Handling multiple instruction sets in a file 98
6.2.2 Other architectures . 101

Contents vii

6.3 Patcher extensions . 101
6.3.1 Consequences of improved disassembly accuracy 101
6.3.2 Increasing performance . 102
6.3.3 Decorrelation of the patching process 102

6.4 Conclusion . 102

7 Conclusion 103
7.1 Contributions . 103
7.2 Future works . 104

7.2.1 Implementing extensions . 105
7.2.2 Future research . 105

A Minjag developer documentation 107
A.1 Description . 107
A.2 Using minjag . 107
A.3 Grammar format . 108

A.3.1 Outline . 108
A.3.2 Begin and end code sections 109
A.3.3 Declarations section . 109
A.3.4 Symbols definitions . 111

A.4 Source file generation . 112
A.4.1 Outline . 112
A.4.2 Generation of the architecture definition 113
A.4.3 Handling files with macro definitions 114
A.4.4 Generation of the FSM structures 116
A.4.5 Generation of the list of post-parsing macros 117
A.4.6 Generation of the list of semantic action macros 117
A.4.7 Generation of the list of encoding macros 117
A.4.8 Generation of the encoding structures 118
A.4.9 Generation of the symbols list 118

A.5 Implementing a new architecture . 118
A.5.1 Building the headers from the .def files 119

B Madras API 121
B.1 libmadras structures . 121
B.2 Disassembling functions . 121
B.3 Patching functions . 121

B.3.1 Patcher initialisation . 122
B.3.2 Data modification . 122
B.3.3 Libraries modification . 123
B.3.4 Code modification . 123
B.3.5 Patcher options . 126
B.3.6 Changing the padding instruction 127
B.3.7 Committing changes . 127

B.4 Logging . 128
B.5 Example of use of the Madras API 128
B.6 The madras executable . 129

Bibliography 131

List of Figures

1.1 Location of binary analysis in the compilation chain of an executable 2

2.1 Overview of the structure of an encoded IA-32 instruction, describing
the relationships between the various bytes involved in the encoding. 9

2.2 Overview of the structure of an encoded Intel 64 instruction, focussing
on the use of the REX prefix. 10

2.3 Overview of the structure of an encoded AVX Intel 64 instruction,
focussing on the use of the VEX prefix. 10

2.4 Representation of the structure of an ELF file, distinguishing between
relocatable and executable files. Source: [14]. 14

2.5 Schematic Description of the handling of references to dynamic func-
tions using lazy binding. The indirect branch instruction in the PLT
entry is always executed when the dynamic function is invoked from
the code, and branches to the address stored in the GOT entry. The
following stub is only executed once, and allows the dynamic loader
to link this call site to a function name which it will use to find
the corresponding address. The string and relocation tables used for
performing this link are not represented here. The address of the
dynamic function depends on the address at which the corresponding
library was loaded into memory. 16

3.1 First iteration of the FSA generated from the sample grammar. . . . 30
3.2 Second iteration of the FSA after splitting overlapping transitions. . 30
3.3 Automaton generated through the extended algorithm. 37
3.4 Part of an automaton handling instructions FWAIT, FNINIT and the

macro instruction FINIT. State 1 is a shift/reduce state; if the tran-
sition over value 1101101111100011, which would lead to the reduc-
tion of symbol 100110111101101111100011 corresponding to macro
instruction FINIT, fails, symbol 10011011 (FWAIT) is reduced instead. 40

4.1 Example of a disassembly being thrown off course and returning er-
roneous instructions. The code used is Intel 64 with instructions of
different binary length. 47

4.2 Example of an obfuscated Intel 64 code. If the disassembler misses
the jmp instruction used to skip the junk bytes, it will process them
and the following instruction as a single instruction very different
from the actual one. 48

4.3 Example of a simple self rewriting Intel 64 code for a single instruction. 49
4.4 Example of the use of overlapping instructions in Intel 64 code in-

volving the stos and rep stos whose opcodes differ only by a prefix. 49
4.5 Example of a linear sweep disassembly on Intel 64 code. 50
4.6 Example of a recursive traversal disassembly on Intel 64 code. 51
4.7 Description of the handling of binary files by the Madras disassem-

bler. 59

x List of Figures

4.8 Performances of the Madras disassembler on Intel 64 files, for var-
ious operating modes. In print only, the instructions are printed
directly without allocating structures, while for mute, the structures
are allocated and destroyed but nothing is printed. Finally, in stan-
dard, the structures are allocated, printed and freed. Raw modes skip
the parsing of the ELF file. 64

4.9 Performances of the Madras disassembler on Xeon Phi coprocessor
files, for various operating modes. In print only, the instructions
are printed directly without allocating structures, while for mute,
the structures are allocated and destroyed but nothing is printed.
Finally, in standard, the structures are allocated, printed and freed.
Raw modes skip the parsing of the ELF file. 64

4.10 Performances of the Madras disassembler on Intel 64 files, compared
with objdump and XED. The Madras disassembler directly prints
instructions without allocating structures (print only mode). 65

4.11 Performances of the Madras disassembler on Xeon Phi coprocessor
files, compared with objdump. The Madras disassembler directly
prints instructions without allocating structures (print only mode). . 65

4.12 Performances of the Madras disassembler on Xeon Phi coprocessor
files, compared with XED. The Madras disassembler directly prints
instructions without allocating structures (print only mode). Unlike
the others, those tests were performed on a Xeon Phi system, causing
a lower speed for both tools. 66

4.13 Performances of the Madras disassembler on Intel 64 files, compared
with ndisasm. The Madras disassembler directly prints instruc-
tions without allocating structures and does not parse the ELF file
(raw print only mode). 67

4.14 Performances of the Madras disassembler on Intel 64 files, com-
pared with udis86 and distorm. The Madras disassembler allo-
cates structures representing instructions without printing them and
does not parse the ELF file (raw mute mode). Missing values indicate
that the tool crashed for all tests on this file. 67

4.15 Performances of the Madras disassembler on Intel 64 files, for var-
ious number of threads. For this test, the mute mode was used for
Madras. 68

4.16 Performances of the Madras disassembler on Xeon Phi coprocessor
files, for various number of threads. For this test, the mute mode was
used for Madras. 68

4.17 Performances of the Madras disassembler in 4 threaded mode on
Intel 64 files, compared with udis86 and distorm. For this test, the
raw mute mode was used for Madras. 68

4.18 Comparison of error ratios between other disassemblers and Madras
for Intel 64 executables. In this test lower values represent a better
accuracy. 69

List of Figures xi

5.1 Example of cases (using Intel 64) where the insertion of a single in-
struction causes branch instructions to point to incorrect addresses.
The branch at address 0x08 in the original code will address the
inserted instruction in the patched code, which can cause the code
execution to be altered. The branch at address 0x12 in the origi-
nal code presents a more serious case, as it will address the second
byte of the inserted instruction in the patched code, which may either
cause an undefined opcode exception or the execution of an erroneous
instruction. 73

5.2 Patching a file using code displacement 82
5.3 Illustration of the principle of using trampolines to displace code . . 85
5.4 Mil: Maqao Instrumentation Language and its integration in the

Maqao framework. Source: [43] . 90
5.5 Comparing overhead time on NAS OMP benchmarks for MIL,

Dyninst and PEBIL using TAU. X axis reports the overhead ratio
compared to the original run. Lower is better. Overhead ratios
greater than 10 are cut. A zero ratio means a crash at runtime.
Source: [43] . 90

7.1 Global description of the Madras and Minjag interconnection and
of Madras operating mode. 104

List of Algorithms

1 Automaton states generation. 28
2 Automaton state expansion. 29
3 Parsing of a word with the FSA. 32
4 Handling a FSA shift state. 33
5 Handling a FSA reduction state. 34
6 Extended automaton state expansion. 36
7 Encoding a symbol. 41
8 Applying a successful reverse semantic action. 42
9 Parsing an instruction . 59
10 Second pass on disassembled instructions 60
11 Code displacement. 82

List of Tables

3.1 Characteristics of the grammar and resulting FSA for the Intel 64,
Intel Xeon Phi coprocessor, and ARM architectures. 38

4.1 Actions performed by the disassemblers used for comparison with
Madras. ELF Parsing means that the disassembler parses the ELF
file to retrieve the boundaries of code to disassemble. Structures
means that the disassembler builds structures representing instruc-
tions. Printing means that the version of the disassembler used for
the test prints the instruction list. 62

4.2 Files used to test disassemblers performance. The occasionally sig-
nificant differences between file size and code size are due to the
presence of labels or debug information. The files described as test
files contain sequences of instructions with various exhaustive combi-
nation of mnemonics and operands and contain no labels nor debug
information. 63

Chapter 1

Introduction

The domain of High Performance Computing (HPC) saw access to higher perfor-
mance be obtained at the price of an increased complexity in all steps of a program
life cycle, from the compilation chain to the processor internal architecture. While
performance improvement remains a critical need, this complexity makes this task
even more difficult. The field of performance analysis aims at finding the best way
to understand the behaviour of HPC applications in order to pinpoint their bottle-
necks, then identify their causes and offer solutions for their removal.

A possible way of achieving this is through the analysis of the source code of
applications. While this is one of the easiest methods, it is not the most precise nor
reliable. In order to take advantage of the architecture abilities, compilers can per-
form extensive code transformations, such as loop unrolling or constant propagation,
when generating the binary executable from the source code. These transformations
may significantly alter the control flow of a program from its source representation
and render most deductions made from the analysis of the source code alone in-
complete at best. It may also be interesting to be able to identify which of those
transformations were performed by the compiler, in order to detect more efficient
alternatives that it missed because of an ambiguous implementation of the algo-
rithm in the source code. Finally, the source code of an application may not be fully
available for analysis, for instance because of confidentiality restrictions.

It is also not always possible to retrieve all useful information from a static
analysis of the code. Some information, such as the timings of routines, can not
be deduced from such an analysis without a significant error margin, if at all. It
may therefore be useful to be able to modify the program, for instance by inserting
probes, in order to retrieve additional information at run time. Performing such
modifications in the source code can however impact the compilation process and
thus the resulting executable, as the compiler will take the altered code into account
when performing its optimisations. This may lead to performance very different from
the original, thus voiding the information gained from those modifications.

It is therefore interesting to be able to directly analyse the assembly code gener-
ated by the compiler, since this is what will be actually be executed by the processor.
Most compilers allow to generate assembly files instead of binaries from a source file.
However, it is usually not possible to generate such a file for the whole program if it
was compiled from multiple source files, which is the case for most real applications.
This will not be possible either when the sources are not available. Additionally,
while it is much closer than the source code to what will be actually executed by
the processor, an assembly file may lack some information useful for analysis. For
instance, the assembler may add padding instructions for alignment when convert-
ing the assembly code to binary, which could have a non negligible impact on the
overall execution time. Also, some information found only by analysing the binary
code, such as the length of binary instructions, may be needed by analysis, for in-
stance to compare with the size of the instruction cache. Finally, if the code must

2 Chapter 1. Introduction

be instrumented, assembly will still be necessary after modification of its assembler
code.

A solution for these constraints is to directly process the binary file, for analysis
and for instrumentation, as illustrated in figure 1.1. This implies being able to
decode the binary code in the file back into assembler code through disassembly,
and to directly modify the binary file through patching.

Figure 1.1: Location of binary analysis in the compilation chain of an executable

Disassembling presents multiple challenges, since a binary file, being intended
solely to be executed by the processor, may lack some information necessary to
analyse its contents, or require some additional processing to retrieve. The internal
structure of binary executables can also make any modification complex to perform
while keeping them functional, as executables, unlike linkable files, are not intended
to be modified. Patching also requires being able to assemble instructions.

While not uncommon tools, most disassemblers return either a printed version
of the assembly code or a simple abstraction, neither of which is sufficient for the
purposes of performance analysis or instrumentation at the assembly level, which
requires a detailed abstraction of the assembly instructions to allow fine-grained
insertion of probes as well as rebuilding the instrumented binary. Existing disas-
semblers may not be available for every architecture involved in a system, require
multiple compiled versions of the program to handle all of them, and need some
customisation to adapt their output to the needs of the analysis to perform.

The solution is the implementation of a generic customisable disassembler and
patcher. To handle HPC systems involving more than one architecture, it is nec-
essary for such a tool to be able to support multiple architectures while presenting
its results in a unified format to reduce the amount of adaptation required from the
applications using it.

Supporting new architectures or keeping up to date with their evolutions can
be costly in terms of development time, and negatively impact the implementation
of actual analysis features. It is therefore necessary to be able to automatise the
generation of architecture specific codes, while keeping an architecture independent
interface with higher level tools. This implies being able to define abstractions of the
binary encoding rules and of the assembly language that can be used to represent
any architectures.

1.1. Contribution 3

1.1 Contribution

In this thesis, we present a method for describing Instruction Set Architecture (ISA)
encoding rules under the form of a context-free grammar with an architecture inde-
pendent format. Implementing a new architecture or expanding an already recog-
nised one is done by creating or editing the relevant grammar file, thus allowing
to stay as close as possible to the format of the instruction list available from the
architecture documentation. This is then used to generate a parser able to process
binary instructions for the corresponding architecture.

We will then present an application of this parser as a multi-architecture disas-
sembler functional for every architecture for which a description has been supplied.
The output of the disassembler is an architecture independent representation of in-
structions, allowing analysis tools using it to remain agnostic with regard to archi-
tecture when performing standard computations such as control flow reconstruction.

We will finally describe an application for the representation of instructions re-
turned by the disassembler under the form of a binary patcher. This contribution
will include solutions to the challenges presented by the patching of binary executa-
bles such as the preservation of control flow.

1.2 Organisation

The outline of this dissertation is presented below.
Chapter 2 presents the context of our research, focusing on the requirements

of analysis tools, the constraints of assembly languages, and briefly describing the
overall structure of binary files.

Chapter 3 presents the challenges tied to the parsing of binary code, the related
works on this subject, and our solutions for describing binary encoding formats as
context-free grammars and generating the associated parser.

Chapter 4 focuses on disassembly, presenting its challenges, common solutions
and related works, then our solution based on the multi-architecture parser gener-
ated from the previous chapter.

Chapter 5 focuses on patching, describing the challenges and common solutions
for instrumenting files as well as related tools, then our choices for addressing these
challenges using the output of the disassembler presented in the previous chapter.

Chapter 6 presents extensions of the tools implementing the principles of the
previous chapters, aiming at increasing their performance and coverage.

Chapter 7 concludes this dissertation.
Annexes contain a detailed description of the tools implementing the concepts

presented in this thesis.
Annex A presents Minjag, the tool allowing to process a grammar represent-

ing the ISA and generate the code for the corresponding parser according to the
principles described in Chapter 3.

Annex B presents the API of Madras, Multi Architecture Disassembler
Rewriter and Assembler, which allows to disassemble and patch binary files ac-
cording to the principles described in Chapters 4 and 5.

Chapter 2

Elements of binary analysis

Analysing binary files presents specific challenges, especially impacting the low level
elements of the analysis chain. We will outline here the specificities of this field,
focusing on the common operations performed by analysis tools and the associated
requirements. We will also consider the structure of binary executable files, which
share common characteristics across architectures and platforms that need to be
taken into account when analysing and modifying them.

2.1 Analysis tools

Analysis tools aim at providing high-level static and dynamic information about the
characteristics of an executable file in a unified format. As the following examples
show, their operating mode and features vary, however their base operations rely
on common elements. HPC Toolkit [34] performs sampling to retrieve the perfor-
mance profile of an application, then correlates its results with information about
the structure of code deduced from binary analysis. TAU [94] is a framework in-
tegrating multiple instrumentation tools using various techniques such as source
code instrumentation, preprocessor or compiler patching, wrapper use and binary
rewriting, and presents the results using different displays. HPCView [78] performs
correlation of source code with data gathered from instrumenting or tracing and
presents the results in a unified format.

2.1.1 Common operations

The operations performed by analysis tools can be broken down into the following
categories:

• Rebuilding the structure of the application: Control Flow Graph (CFG), Call
Graph (CG), Data Dependency Graph (DDG)

• Estimation of the performance from static analysis

• Instrumentation in order to time code sections, profile runtime values, or sur-
vey the code execution

• Presentation of the results in a unified format

Most tools either rely on a third-party tool for these tasks, such as PIN [67] or
DynInst [41], or integrate hard-coded modules specific to their needs.

2.1.2 Additional constraints

HPC applications can involve multiple languages, compilers and architectures, some-
times in the same application. Since analysis tools aim at offering advices on how to
improve existing applications, they should not impose constraints on the subject of

6 Chapter 2. Elements of binary analysis

their analysis to be effective. The tools therefore need to support most versions of
the elements involved in a compilation chain in order to ensure an optimal coverage.

Operating at the language level implies handling the most commonly used lan-
guages, such as C, C++ and Fortran. This is also important when presenting
analysis results in order to correlate them with the source code.

Operating at the compiler level allows access to the intermediary representation
it uses for generating the assembly code, which is a very powerful tool for retrieving
the structure of a program as well as for modifying it for instrumentation. However,
this implies some access to the code of the compiler or its ability to support plug-
ins. While this is easy for Open-Source compilers such as GNU gcc, it can be more
complicated for industrial compilers as Intel icc. It is also ineffective if the code was
not compiled but directly written in assembly code.

Finally, operating at the binary level implies being able to support the multiple
architectures possibly involved in a single application. Binary code also contains less
information than other stages about the code behaviour, which makes the extraction
of useful analysis data more complex.

2.1.3 Operating at the binary level

We will describe here the requirements induced by the operations described in 2.1.1
when operating at the binary level.

Building the CFG This task implies the ability to retrieve the list of assem-
bly instructions present in a binary file, including all information relative to the
flow. Since tools are expected to work on multiple architectures with different in-
struction sets, this information must be accessible in a format independent on the
ISA. It is therefore necessary to be able to correctly disassemble files and return an
architecture independent abstraction of the assembly code they contain.

Static analysis This task requires additional knowledge concerning the behaviour
of assembly instructions. This knowledge can be as basic as the operation performed
by the instruction and the type and size of data affected, but can also include
information not easily available from the constructor documentation, such as the
number of cycles needed by the processor to execute the instruction or its latency.

Instrumentation This task requires being able to edit a binary file to alter its
behaviour at a low granularity while ensuring that the overall execution of the
program is not affected, unless that is the desired effect.

Presenting the results In order to offer meaningful information, this requires
being able to establish a correlation between the binary code present in the exe-
cutable with its source code, since the latter is usually what the developers are able
to update to improve performance according to the results of the analysis.

2.2 Assembly language

We will now describe the specificities of assembly language and its associated binary
representation, focusing on the challenges they present to analysis and parsing.

2.2. Assembly language 7

Assembly is a low-level language directly representing the operations performed
by the processor. Unlike compiled languages, assembly is specific to a given processor
architecture, as it directly depends on the processor instructions and registers sets.

An assembly statement is an instruction. Instructions are composed of a
mnemonic, which is a command to be executed by the processor, and a list of
operands. Operands can be registers, memory addresses or immediate values.
Mnemonics can be roughly categorised between the following operations:

• A numerical operation between the operands

• The affectation of a value, immediate or stored in a register or memory address,
to another register or memory address

• Branching of the control flow of the program to a given address

Assembly language use labels to reference the destination of branch instructions.
Special directives also allow to declare some labels as functions; this is especially
useful for declaring functions intended to be invoked from a different assembly source
file, or in the code of a shared library.

2.2.1 Binary encoding

The encoding rules for an architecture specify how to translate assembly instructions
into binary code, also called assembling. Those rules usually establish a one-to-one
correspondence between both representations, although in some cases different in-
structions can represent an identical operation, and as such be indifferently encoded
as one or another. For instance, an instruction whose mnemonic represents the
swapping of values between both of its operands can accept any order between its
operands, and thus different encodings, for the same operation. Some mnemonics
can also be homonyms of each others, leading to different assembly instructions
having the same coding. Finally, some architectures may define macro mnemonics,
representing multiple instructions, which are assembled into their respective binary
encodings. Conversely, alias mnemonics can be defined, representing a specific vari-
ant of an instruction, and assembled as such.

In binary code, branch instructions do not use labels to reference their desti-
nation, but instead use the address of the destination instruction. The only use of
labels in binary code is for relocations tables (cf. 2.3.2.3).

There are no separations between instructions in binary code. Depending on the
architecture, encoded binary instructions can be of different lengths in bits.

2.2.2 Execution

Instructions in a program are executed by the processor in the order into which
they appear in the file, until a branch instruction is encountered. The instruction
pointer, or program counter, represents the virtual address of the instruction to be
executed by the processor. It is used implicitly by branch instructions to address
their destination. It is usually handled as a register, which allows to use it in the
expression of memory addresses and access or edit its value with specific instructions.

Most assembly languages include a no operation instruction, usually called nop,
that does not perform any operation. Such an instruction can be used as filler
to align code or to temporarily stall the processor and ensure data dependencies

8 Chapter 2. Elements of binary analysis

are broken. Compilers may however achieve these goals through other instructions
whose performed operation do not actually affect the control flow nor the data set,
such as switching the content of a register with itself.

2.2.3 Addressing

A branch instruction can reference its destination through either absolute addressing,
using the address of the destination, or relative addressing, using the offset between
the branch and its destination. Direct branches store this reference as an immediate
operand while indirect branches store it in a register or memory operand.

References to addresses in memory are based either on an absolute value, the
value stored in one or more registers, or the sum of both. Some architectures may
also allow to reference addresses through the offset from the current instruction; such
a mode is mainly used for referencing memory locations defined in the executable,
as the address of dynamically allocated variables would be unknown before runtime
and may need a relocation. As noted in 2.2.2, these addresses may be represented
as being based on the instruction pointer.

Direct addressing is easier to handle for analysis tools as the referenced addressed
can be deduced from the address of the referring instruction.

2.2.4 Overview of different architectures

Below is a quick presentation of some of the most used architectures, focusing more
closely on those derived from the Intel x86 architecture as it offers particular chal-
lenges in terms of disassembly and patching and is widely represented in HPC.

2.2.4.1 IA-32

The IA-32 architecture [19, 17, 18], also called x86, i386 or x86-32, is a CISC archi-
tecture used by the Intel processors since the 8086 version and by AMD processors
[1, 2, 3, 4, 5]. The architecture counts approximatively 400 different mnemonics.

IA-32 assembly instructions accept zero to two operands. Operands representing
memory addresses can be expressed as the sum of an immediate value with the value
stored in a base register and the value of an index register multiplied by a scalar.

The binary encoding of instructions vary between 1 and 15 bytes. Among the
factors causing an instruction length to vary are the 1-byte legacy prefixes, of which
an instruction can accept representatives of up to four different families in any order,
with a given prefix possibly appearing more than once. Another factor is the length
over which immediate values and memory displacements are encoded, which vary
between 1 and 4 bytes depending on their ranges. Finally, the type of operands and
the expression of memory addresses can impact the instruction length as well.

One particular specificity is that most direct branch instructions exist in two
variants of different length, one coded on 5 bytes with a 32-bits signed offset range
and the other coded on 2 bytes with an 8-bits offset range.

Figure 2.1 presents an overview of the structure of a binary IA-32 instruction.

2.2.4.2 Intel 64

The Intel 64 architecture, also known as AMD64 or x64, is an evolution of IA-32
to support 64 bits processors. It ensures backward compatibility with all previous
versions of the processors and as such defines more than 1000 different mnemonics.

2.2. Assembly language 9

Figure 2.1: Overview of the structure of an encoded IA-32 instruction, describing
the relationships between the various bytes involved in the encoding.

The Intel 64 architecture allows access to 16 64-bits general purpose registers instead
of 8 for IA-32. It is possible to access only the 32, 16 or 8 least significant bits
of those registers, thus emulating registers with this size, and ensuring backward
compatibility for codes using such registers.

Although most IA-32 instructions exist in Intel 64, the encoding of some of them
may be invalid or have a different meaning. For instance, one possible IA-32 coding
for the inc and dec mnemonics (allowing to respectively increment or decrement
a register) is used in Intel 64 for a prefix allowing to access additional registers.
Processors supporting Intel 64 can be switched to a “legacy mode”, effectively op-
erating as 32 bits processors, through a sequence of instructions accessible only by
the operating system in protected mode.

The Intel 64 architecture undergoes frequent evolutions, with new instructions
appearing every 6 months and whole new instruction subsets, such as SSE and AVX,
every two years. Instruction subsets can contain hundredths of new instructions and
new encoding rules for representing them as well.

The SSE extensions introduced 16 128-bits vector registers, and instructions
accepting up to three operands. The AVX extension extended those registers to 256
bits, with instructions accepting up to four operands. The latest extension AVX2
allows to access non-contiguous memory addresses to perform gather or scatter
operations on vectors. The upcoming AVX-512 extension will increase the number
of vector registers to 32 and extend them to 512-bits, and add specific mask registers.

Intel 64 instructions use an additional optional 1-byte prefix (REX) to encode
that an instruction uses 64 bits operands, and to access the additional registers
(identifier ≥ 8). The SSE extension uses some of the legacy prefixes to distinguish
between opcodes, making them mandatory for some encodings. The AVX extension
uses another 2 or 3 bytes prefix (VEX), to extend the functionalities of the REX
prefix and access the new 256 bits registers. The AVX-512 extension will use a new
4-bytes prefix, EVEX, to encode its new features.

All Intel 64 direct branch instructions use relative addressing. The architecture
also allows to address memory locations relatively to the current instruction pointer.

Figures 2.2 and 2.3 describe the uses of the REX and VEX prefixes in the binary
encoding of Intel 64 instructions.

2.2.4.3 Intel Xeon Phi coprocessor

Intel Xeon Phi coprocessor [22, 21], also known as MIC or K1OM, is the latest
Intel multiprocessor architecture. It is based on Intel 64 processors without the SSE
nor AVX extensions, and as such no access to the 128 or 256-bits vector registers,
but offers access to 32 512-bits vector registers. Xeon Phi defines 500 different
mnemonics.

10 Chapter 2. Elements of binary analysis

Figure 2.2: Overview of the structure of an encoded Intel 64 instruction, focussing
on the use of the REX prefix.

Figure 2.3: Overview of the structure of an encoded AVX Intel 64 instruction,
focussing on the use of the VEX prefix.

The memory or vector register operands of a Xeon Phi coprocessor assembly
instruction accept a modifier to tweak their use. Such a modifier can either be a
flag specifying conversions to apply to the operand, a cache line eviction hint, or
a mask, defined in a special register, specifying which elements in a vector will be
affected by the operation.

Some conditional branch instructions in Xeon Phi can accept two operands,
representing the destination and the condition to apply to the branch.

The binary encoding of Xeon Phi instructions obeys the same rules as Intel 64.
A 4-bytes prefix (MVEX) is used to encode the new features of the architecture.
Another difference with Intel 64 is the possibility of compressing offsets used in
memory addresses by dividing the encoded value by a given factor.

2.2.4.4 Intel Itanium

The Intel Itanium architecture [20], also called IA-64, is a parallel Intel architecture
distinct from x86, although Itanium processors allow to run IA-32 applications. The
Intel Itanium instruction set numbers approximately 200 mnemonics. The architec-
ture allows parallelism at the instruction level, and offers specialised mechanisms for
handling conditional execution of instructions. The use of Intel Itanium processors
in HPC applications saw a decrease in the recent years.

Intel Itanium instructions accept at least three operands, and use a predicate for
identifying if the result of the instructions shall be kept or discarded. Instructions
are grouped into bundles, composed of three instructions and a template specifying
the type of instructions it contains.

In binary, all instructions are encoded on a fixed length of 41 bits, and the
templates on five bits, thus making the encoding of a bundle 128 bits long.

2.3. Binary executable 11

2.2.4.5 ARM

The ARM architecture [90, 12, 9, 10, 11, 7] is a RISC architecture designed and li-
censed by ARM Holdings and used by various processors. It is mainly used in mobile
systems but also involved in ongoing HPC projects such as the Mont-Blanc project
[25]. The architectures undergoes frequent evolutions, with new versions released on
a yearly basis. ARM processors support three instruction sets: ARM, which defines
32-bits instructions, Thumb, which defines 16 or 32-bits instructions, and A64 (from
ARMv8 onwards), which defines 64-bits instructions. ARM instruction sets number
approximately 200 different mnemonics.

Instructions from the ARM and A64 instruction set are always encoded on a
fixed length of 32 bits and aligned on a four bytes boundary. Most ARM instructions
are prefixed with a condition specifying whether the instruction must actually be
executed. When present, this condition is always encoded on the five first bits. The
binary template of the instructions depends on the type of operations performed.

Instructions from the Thumb instruction set are encoded either on 32 or 16 bits
and aligned on a two bytes boundary. The first five bits of an instruction allow to
identify its size. Branch instructions exist in the 16 and 32 bits version.

In binary code, both instruction sets overlap: encoded instructions from one can
be decoded as a different instruction from the other. A same ARM executable file
can contain blocks of instruction from the ARM and Thumb instruction sets. In this
case, a specific branch instruction is used to notify the processor of the change of
architecture. This mechanism, also called interworking, can also be used to switch
the processor to the ThumbEE set, which uses a slightly different instruction set from
Thumb, or to the Jazelle state to execute bytecode programs. A64 uses different
encoding rules than either the ARM or Thumb instruction sets. A64 processors can
also execute 32-bits code but the switch is done at the exception level.

ARM contains instructions for setting the value of the instruction pointer regis-
ter, allowing to branch the control flow without using an explicit branch instruction.

2.2.4.6 Power ISA

Power ISA [29], evolved from the PowerPC, is a RISC architecture used by IBM
and Motorola processors in home computers and in HPC. It offers 32 and 64 bits
modes. The instruction set is stable and number approximately 900 mnemonics.

All Power ISA instructions are 32 bits long and must be word aligned. A field in
an instruction coding may be split over multiple locations inside it. The template
of an instruction binary encoding depends on the type of operations it performs.

2.3 Binary executable

An executable is a binary file with a specific format allowing the operating system to
identify how to load it into memory and execute it. The same format is usually used
for relocatable files, which are used as intermediary files generated by a compiler and
used by the linker to generate an executable, and library files, which contain common
shared code usable by executables. This format can also be used for representing
dump files, generated after a program crash for debugging.

Dynamic executables rely on external libraries for the definition of some func-
tions or variables, while static executables are stand-alone containing all information

12 Chapter 2. Elements of binary analysis

needed for running them. A relocatable file contains compiled code and information
used by the linker to generate a functional executable from it and other related files.

2.3.1 General structure

Executable files commonly contain the following elements:

• Format identifier (“magic word”)

• Header describing the structure of the file

• Binary code to execute

• Variables used by the code

• Directives for the OS on how to load and execute the file

• Relocation tables

• Information on how to invoke external functions for dynamic executables

• Optionally:

– Debug information, added if requested by the compiler

– Labels, depending on compiler settings.

In most binary formats, files are broken down into sections. A section contains
one given type of data, such as code, variables or relocation, and other specific
information, such as the virtual addresses at which it must be loaded when executing
the file and the rights to set on the corresponding memory segment. It is possible
for a section not to be loaded into memory when running the program if its content
is not needed at runtime, for instance in the case of debug information. Sections
are identified in a header specifying the offsets in the file containing their data.

Some formats also use the concept of segments. In these cases, segments are
used by the loader, while sections are used by the linker when building the file.

2.3.2 Contents

Apart from executable code, binary files commonly contain information which can
be useful for further static analysis.

2.3.2.1 Symbols

Binary files can contain string symbols, which are associated to an address and
possibly a type characterising what they represent. They can be used to reference
specific locations in the file such as the beginning of a function or a variable. Most
of those symbols are however not needed by an executable file, and as such may be
removed without affecting its behaviour. The most important exception to this are
relocations (see 2.3.2.3), which explicitly need a symbol. When generating binary
files, compilers usually keep only a small subset of the labels appearing in assembly
code, mainly restricted to function and variable names.

It is also important to note that, while a binary format may define specific types
for identifying the uses of a symbol, those are not mandatory either. It is therefore

2.3. Binary executable 13

possible for a binary file to contain symbols actually corresponding to the beginning
of functions, but being identified with a generic non indicative type.

The compilers for certain languages, like C++ or Fortran, use the concept of
name mangling, where the symbols stored in a binary file are not the same as those
used for a variable or function name as they appear in the source code, but are
instead run through an encoding (mangling) algorithm. In this case, it is necessary
to decode the names found in the file to retrieve the original names. The algorithm
used to mangle the names depends on the language and the compiler used to generate
the file. [58] presents some of those algorithms, which are not always available and
may require some reverse engineering to retrieve.

2.3.2.2 Variables

An executable can contain variables, usually those that may be accessed from any-
where in the program (global variables) or have a fixed value, such as a character
string or a branch table used by a switch operation; dynamically-allocated variables
are not present in an executable. Variables that can be read or written are usually
in a different section or segment than those that are read only, allowing to set the
appropriate rights on it at run time.

Some systems may adopt a special behaviour with regard to variables whose
value is not initialised at compilation time. Those variables are defined in a special
section that does not take any space in the file, but whose attributes specify a size
in memory. The loader is responsible for allocating the necessary space for those
sections when loading the file in memory.

2.3.2.3 Relocation

Relocation is the process of updating a reference address in a file after it was gener-
ated. It is usually performed through a relocation table which references locations
in the code or data and the symbol to which they are linked. When the address
of the symbol is known, the reference is updated accordingly. It is mostly used by
the linker during compilation; a compiled relocatable file contains relocation tables
for all symbols defined in other files, allowing the linker to resolve references to the
code or data corresponding to those symbols in the final linked file.

2.3.2.4 Referencing an external source

Most recent file formats allow to reference code or variables defined in an external
file. The most common use for this is the invocation of functions defined in a
shared library. The address at which the external reference is loaded in memory is
not known when the executable is generated, so a relocation table (as described in
2.3.2.3) must be used. References to an external source are usually redirected to a
specific section linked to a relocation table. Depending on the system and settings
of the executable, the addresses can be filled either during program loading or when
they are accessed for the first time.

2.3.2.5 Debug information

Debug information is not needed for a standard execution of a program, but is
used when running it through a debugger utility. It is usually stored in a separate
section not loaded into memory at runtime. The format of those sections may be

14 Chapter 2. Elements of binary analysis

independent from the format representing the executable. Debug information aims
at allowing the debugger to establish the relation between the source code and the
binary file, and as such can contain correspondences between binary addresses and
lines in the source code, or between memory locations and variable names.

2.3.3 Common binary formats

We present here a quick overview of the most important binary formats. We will
focus more closely on ELF as it is the format with which we worked more extensively.

2.3.3.1 The ELF format

ELF (Executable and Linkable Format [14, 76]) is the format used by the Unix and
Linux operating systems. It is used for object files, executable files, library files, and
core dump files. ELF is an evolution of the a.out format.

The contents of an ELF file can be represented as a table of either sections or
segments, each being identified in a distinct header. The section header is manda-
tory in an object file while the program header is mandatory in an executable file
or a library. While the section header is optional in an executable file according
to the standard, compilers routinely keep it in executable files. A segment usually
encompasses multiple sections, but the standard does not specifies that the bound-
aries of a segment must match with those of sections. An ELF file always contains
a general header identifying the file type and the offsets in the file of the sections
and/or segments headers. Figure 2.4 represents the structure of an ELF file.

Figure 2.4: Representation of the structure of an ELF file, distinguishing between
relocatable and executable files. Source: [14].

Segments Segments contain the virtual address at which the corresponding bytes
from the file must be loaded into memory when executing it, as well as the rights to
set on those addresses. An ELF executable usually contains the following segments:

• A segment containing the program header,

• A segment describing the interpreter to use when executing the file,

• A readable and executable segment containing the code and read-only variables

• A readable and writeable segment containing read-write variables.

Other segments contain information relative to external libraries for dynamic files.

2.3. Binary executable 15

Sections Sections in an ELF file follow the general description (cf. 2.3.1). Unlike
segments, sections can be named. The standard does not impose a strict constraint
on sections names, and more than one section can have the same name. However,
compilers tend to reserve names for sections containing specific data. Common
sections include:

• Executable code sections: “.text”, “.init” and “.fini” contain respectively
the main, initialisation and termination codes

• Data sections: “.rodata”, “.data” and “.bss” contain respectively read-only
variables, read-write variables and uninitialised variables

• Relocation sections are named as the section they reference prefixed with
“.rela”

• String table: “.strtab”, “.shstrtab” “.dynstr” respectively contain strings
used for labels, section names and dynamic symbols.

• Offset tables: “.got” and “.got.plt” contain addresses used for referencing
dynamic functions or variables.

Accessing dynamic functions A special mechanism allows ELF files to perform
on-demand relocation, also called lazy binding, by retrieving the address of a dy-
namic function only when it is first needed, allowing to reduce the invocations of
the dynamic loader. Calls to external functions point to a stub, which retrieves the
address at which the function is loaded from the Global Offset Table (GOT) and
redirects the flow there. The GOT is defined in the binary file, each cell initialised
with the address of instructions in the stub allowing to invoke the dynamic loader for
the corresponding function based on its name. When the dynamic loader is invoked
for a function, it also updates the associated cell in the GOT with the function ad-
dress, thus ensuring further calls to this function directly branch to it. Executable
code for the stubs is usually present in the “.plt” section, with the “.got.plt”
section containing the GOT. Figure 2.5 presents a description of this process.

Debug information ELF file can contain debug information in specific sections
that not loaded when executing the program. These sections use DWARF [31],
an independent format not tied to ELF, and the debug information they contain
depends on the compiler version and options used. Common information stored
includes the compiler name and version, the association between line numbers and
instructions addresses, the original function names (without the mangling if present),
and function parameters, start addresses, and local variables.

2.3.3.2 Other formats

The following binary formats are used on other operating systems.

a.out This format [6], used on older Unix systems, is one of the first formats for
binary files. It has been now mostly replaced by the COFF then ELF formats in
the Unix/Linux environment. a.out files are broken down into sections, containing
the executable code, symbols, relocations and data. A header contains the sizes of
the various sections, and begins with a branch instruction to the entry point of the

16 Chapter 2. Elements of binary analysis

Figure 2.5: Schematic Description of the handling of references to dynamic functions
using lazy binding. The indirect branch instruction in the PLT entry is always
executed when the dynamic function is invoked from the code, and branches to the
address stored in the GOT entry. The following stub is only executed once, and
allows the dynamic loader to link this call site to a function name which it will
use to find the corresponding address. The string and relocation tables used for
performing this link are not represented here. The address of the dynamic function
depends on the address at which the corresponding library was loaded into memory.

executable code. The loader ensures that the program does not run past its size by
setting a break at the end of the text and data sections. Debug information can
also be stored in special entries of the symbol sections.

COFF The Common Object File Format was introduced on more recent Unix
systems, before being replaced by ELF. It is used by Windows in conjunction with
PE and some of its variants are used by IBM AIX (XCOFF [32]) or Texas Instrument
[13]. COFF files are broken down into sections. The format allows for an optional
second file header, which is used when the file is executable to specify the program
entry point and the sizes to load in memory. A COFF file can also contain a special
section storing line numbers for debugging.

Windows PE The Portable Executable format [84] [24] is used by Windows-
based operating systems. It is an evolution of the COFF format and is occasionally
referred to as COFF/PE. A PE file contains a MS-DOS header, used to display an
error message if the file is run on a system unable to support it. This header also
contains the offset in the file of the PE header. PE files are broken down into sections,
identified in a section table referenced in the PE header. Debug information is stored
in the read only data section. Dynamic functions are invoked in a mechanism similar
to the lazy binding used in ELF files described in 2.3.3.1.

2.3. Binary executable 17

Mach-O The Mach Object format [28] is used by systems based on the Mach
kernel ([33]), the most prominent being Apple Mac OS X. Like ELF, Mach-O is an
evolution of the a.out format, and both share similar concepts. Mach-O files are
broken down into sections and segments, a segment containing zero or more sections.
The header also contains load commands allowing to specify additional information
about the file, such as the shared libraries sed in a dynamic executable. Multiple
Mach-O files can be combined into a multiple architecture binary, containing files
compiled for different architectures.

AIF The ARM Image Format [8] is a simple format used for executables, while
ALF (ARM Object Library Format) is the corresponding format used for libraries.
AIF files use a header specifying the entry point of the executable, a code image
and a data image. An AIF executable can relocate itself after being loaded, using a
special self-relocation code and a relocation list stored in the code image.

Chapter 3

Generation of a generic binary
decoder and encoder

Recognition of the binary encoding format of the architecture for which the binary
file has been compiled constitutes the first step in the implementation of a disas-
sembler and assembler. As mentioned in Section 2.2.4, for some architectures this
format can be subject to significant and relatively frequent changes, which must be
reflected in the implementation of the associated encoder and decoder. It is therefore
essential to ensure that the update of an existing architecture is simplified enough
to allow frequent modifications at a minimal cost.

Another constraint is tied to the increasing use of heterogeneous systems in HPC
applications, where multiple architectures can be involved, for instance in the case of
processors coupled with accelerators. In that case, a complete analysis of the whole
system requires being able to recognise the instruction sets of all the components it
involves. To simplify the analysis chain, it is therefore useful to be able to handle
multiple architectures with the same tool, which requires for the implementation of
new architectures not to be overly costly.

In order to minimise the architecture specific parts of the analysis chain, it is also
interesting to keep a unified higher level representation of the instructions. Analysis
tools may need specific additional information, requiring for a disassembler to be
modular enough to allow easy customisation of its output.

Since we are aiming at providing generic parsers with multiple possible uses,
it is best to separate the description of the ISA from the actions performed upon
the successful parsing of an instruction. This allows for instance to use the same
representation of an architecture in multiple tools serving different purposes, such
as plain disassembly or simulation, and to rely on the same representation to create
the associated encoder. Some analyses may also require additional information
not deducible from binary code, such as characteristics specific to static analysis
or profiling; to avoid looking them up during processing, it can be interesting to
load these during disassembly into the representations of instructions for better
performance. It can also prove useful to be able to trigger specific actions after the
successful disassembly of an instruction, for instance when performing a simulation
of the executable. For these reasons, it is essential to easily dissociate the process
of parsing the binary code from the actions performed upon a successful parsing.

In this chapter, we will first present common solutions tied to parsing binary
code in Section 3.1 and its main challenges in Section 3.2, then our solution as a
context-free grammar in Section 3.3 and its implementation in Section 3.4.

3.1 Parsers and architecture representation

We will briefly cover here the main principles of parsing and grammars, and present
other works concerning the representation of binary architectures.

20 Chapter 3. Generation of a generic binary decoder and encoder

3.1.1 Parsers

Parsers are generally used to process files with a strict formatting, for instance source
files written in a programming language, and rely on a grammar for specifying the
format of the files to parse. They are mainly used for parsing text files, but can are
also be used to describe strict binary formats, as presented in [98].

3.1.1.1 Context-free grammars

A grammar is composed of a set of symbols and productions, a production being a
possible form of a given symbol expressed as a sequence of symbols. Symbols are
distinguished between those without productions, called terminals, and the others,
called nonterminals. The symbol whose production represents the entire grammar
is called the start symbol. We will also use the term token to identify a terminal
symbol representing any possible value over a given length.

For instance, in a grammar representing a programming language, the terminals
are the keywords of the language; an example of nonterminal would be the symbol
representing a function definition, and the start symbol the symbol representing a
whole source file. Tokens would be the names of variables, as they are terminals
without a fixed value.

A parser for a given grammar attempts to recognise, or reduce, its symbols in the
file it is processing. Bottom-up parsers, also called LR-parsers, attempt to match
each symbol starting from the lowest ones in the production hierarchy, then work
they way up to the start symbol. A LR(0) parser only needs the symbol it is
parsing to reduce it. Lookahead parsers, also called LR(x) parsers, need to check
further symbols in a production to successfully reduce a symbol. A parser is usually
implemented as a Finite State Automaton (FSA).

A grammar allows to associate a semantic action to a given production, which
will then be executed upon reduction of the corresponding symbol from this pro-
duction. This is used for instance to build an internal structure corresponding to
the recognition of a pattern.

3.1.1.2 Parsing Expression Grammars

Parsing Expression Grammar (PEG) [60] are composed of a set of symbols and
rules. A rule is close to a production, but can be defined using regular expressions.
PEG also allow to specify preference between rules. Packrat parsing [59] is an
optimisation allowing to implement parsers using memoization and backtracking to
speed up parsing.

If used to disassemble a binary instruction, a PEG algorithm would attempt to
match the whole instruction recursively. This would lead to inefficient parsing, as
the topmost function for disassembling an instruction would attempt to recursively
match all the symbols in a rule representing a possible expression of an instruction
before switching to the next. Memoization may not even be useful here as the
symbols appearing in the various rules could differ. Also, in the case of architectures
where instructions have variable length, it would be necessary to try such a recursive
parsing for each possible length of an instruction.

3.1. Parsers and architecture representation 21

3.1.1.3 Procedural parsing

Procedural parsing [35] [104] consists in interleaving the parsing process with the
evaluation of the results, thus allowing to control the parsing from the grammar
itself. It is useful for handling complex rules that are not easily expressed using a
declarative description. It can also be used for improving performance by restricting
the possible upcoming choices based on predictions depending on what has been
parsed so far.

In our context, this method would allow more flexibility in the handling of com-
plicated encoding rules, such as those present in the ARM architecture. It would
also simplify the handling of parsing errors by allowing to specify more precisely the
backtracking rules to apply when a parser state can not find a successor matching
with the current input. Finally, it could also reduce the time needed for parsing
instructions by allowing to optimise some matching operations depending on the
overall parsing progress.

This would however imply a more complex grammar, which would then increase
the time needed for implementing new architectures or updating existing ones, thus
going contrary to our goal of reducing the workload for those implementations. It
could also lead to markedly different parsing processes, requiring more implemen-
tation to obtain a unified output. Another drawback is that it would make the
generation of an encoder and decoder from a single grammar more complex to im-
plement. We consider that declarative grammars are able to represent the encoding
rules for all binary architectures and therefore offer a good compromise between
coverage and implementation time.

However, since procedural parsing may prove useful for handling specific cases,
the implementation of the parser generation from the grammar should allow future
evolutions including this method.

3.1.2 Related work

Although the descriptions of ISA encoding rules are usually hard coded in disas-
semblers and assemblers, thus avoiding the need to describe binary instructions in a
unified format, there have been other attempts at representing the binary encoding
rules of an architecture under such a format. Other works describing instruction
sets aim at facilitating higher level manipulations.

3.1.2.1 SLED and GDSL

SLED [86] and GDSL [93] are alternative approaches using structured languages to
represent instructions of different architectures. In both cases, instructions and their
parts are represented as patterns, allowing to define the encoding and decoding rules
for the symbol. The source of the associated functions is generated by translating
matching patterns into nested case statements expressed in the target programming
language.

SLED allows to define groups of instructions as patterns in addition to more fine-
grained elements. GDSL uses a monadic approach where the different parts of an
instruction must be declared and typed. The actions performed upon recognising
a pattern must also be specified in the description of the patterns, making them
dependent on the formalisation of the binary architecture into the language.

22 Chapter 3. Generation of a generic binary decoder and encoder

Both of these approaches suffer partly from the same drawbacks as the PEG
approach, since the resulting decoder would attempt to recursively match all sub
elements of a given symbol before switching to the next expression, thus leading to
poor performance when using the corresponding parser as a disassembler.

3.1.2.2 LLVM

LLVM [71] is a compiler framework allowing to handle the inner components of
a program using a common, low-level, internal representation using a neutral in-
struction set. It is used by an increasing number of compilers, including the GNU
compiler gcc [95], for which it was initially written [70].

LLVM also offers components for building target specific back ends and front
ends. This includes the LLVM code generator, which allows to translate the internal
representation into the assembly or binary code of a given architecture.

LLVM back ends use tables for defining the specificities of instructions with re-
gard to the framework internal representation, including their coding. It is therefore
possible to use these tables to generate a disassembler or an assembler for the cor-
responding architecture. However, the format used for the tables does not cover
all possibilities, requiring architecture specific code to be added for handling the
assembly and disassembly process. This is for instance the case in ARM, where
the absence of opcodes forces some instructions coding to be defined in specific
associated source code.

3.1.2.3 ISDL

ISDL [64] is a language allowing to describe architectures for use by retargetable
compilers intended to be used by embedded systems. The language represents the
ISA as a context-free grammar, which can be processed by Lex and Yacc [72] to
generate an assembler. The language is however not intended to be used to allow
the generation of a disassembler.

3.1.2.4 SALTO

SALTO [88] is a retargetable framework for building optimisation tools, including
analysis and instrumentation. It requires a machine description of the architecture,
which can be more or less detailed depending on the need of the tools to build. The
internal workings of SALTO rely on this description and are therefore agnostic with
regard to the architecture.

SALTO is intended to work on assembly files, either for analysis or for instru-
mentations. Its machine description may not be used directly for building encoders
and decoders.

3.1.2.5 Machine Description Languages

Machine Description Languages are formalisms used to represent instruction sets,
focusing on their assembly syntax, authorised formats, and behaviour. These lan-
guages include nML [61] [56], MDS [52], or Sim-nML [85]. Although they may use a
grammar formalism, their primary purpose is not the description of encoding rules.

An example of building a disassembler from the Sim-nML representation is de-
scribed in [50]. The disassembler uses a bit by bit matching tree, with possible
backtracking, which is inefficient in terms of performance.

3.2. Parsing challenges 23

3.2 Parsing challenges

One of the most important challenge of parsing binary code stems from the fact that
there is no separation between binary instructions, such as spaces in text. On archi-
tectures where instructions are of variable length, this prevents the detection of the
bytes composing an instruction before decoding it. This can make the identification
of symbols during parsing more complicated.

While processors contain embedded decoders allowing them to parse binary code,
those are highly specific and optimised for the relevant architecture. Our approach
instead aims at offering a generic parser functional for all types for architectures.
For those reasons, it is best to use an approach fitting all cases instead of adopting
different behaviours depending on the properties of the architecture such as the
length of instructions being fixed or not.

We will detail here the challenges brought by the use of a grammar for describing
the encoding rules of architecture.

3.2.1 Constraints on grammar

The specific nature of binary code prevents the identification of symbols during
parsing through simple means like the detection of a specific terminal.

A direct application of the standard methods for building grammars would be
to consider bits as terminals, with possible values being 0 or 1. Since the encoding
formats of binary instructions can contain bit fields of any value, for instance when
encoding an immediate operand, a token representing a bit of indeterminate value
would also have to be used. However, this definition of terminals would lead a
standard parser to attempt detecting bits one by one, slowing down the lexical
analysis process.

Since the parser must be able to disassemble binary code for any architecture, it
must remain agnostic with regard to the structure of an instruction. It is therefore
not possible to presume of the size and position of the important fields inside the
encoding of an instruction or to consider that all terminals will always have a fixed
length, like a byte. It is not possible either to hard code the looking up of a given
field inside an instruction to retrieve specific information concerning the disassembly
of the whole instruction.

Another constraint is keeping the structure of the grammar as close as possible to
the one employed in the ISA description, in order to make updates easier. Because
of the format of some documentations, it is therefore possible that the grammar will
contain symbols whose production can overlap with one another.

For instance, architecture documentations can contain two instructions Insn1
and Insn2 respectively coded as 0100xxxx and 01001111. This can mean either that
Insn2 is a special case of Insn1 or that the last 4 bits of Insn1 can never take the
value 1111, for instance if they correspond to the encoding of an operand for which
1111 is not a valid occurrence. This last case can also happen without an instruction
such as Insn2 existing. In the grammar, the symbol representing an instruction
would then contain two overlapping productions, as it would be inefficient to create
separate cases for all the possible values of the coding of Insn1.

24 Chapter 3. Generation of a generic binary decoder and encoder

3.2.2 Architecture specific challenges

The various architectures of interest to the HPC community present different exam-
ple of the challenges of disassembly.

3.2.2.1 Challenges of the Intel architectures

A particular challenge of the Intel 64 and Xeon Phi coprocessor architectures (cf.
2.2.4) occurs with the legacy prefixes, which are four families of 1-byte optional pre-
fixes. They can appear in any order and impact the behaviour of the instruction they
prefix, but can also be used to differentiate some instructions. Also, while this has
no impact on execution, the same prefix can be added multiple times to an instruc-
tion by the compiler, usually for alignment purposes. When parsing an instruction,
it is therefore necessary to be able to recognise these prefixes independently of their
order or possible repetition.

Another complexity concerns the ModR/M byte, which is used in Intel instruc-
tions to encode up to two operands, and is potentially followed by another byte,
the SIB byte, and a numerical value coded on 1 to 4 bytes, both concerning the
representation of an address operand. The presence of these following bytes is de-
duced from the coding of the ModR/M byte, making it necessary for the parser to
analyse it in order to recognise the need to read those additional bytes to complete
the decoding of the instruction.

Another challenge may arise when the documentation contains pseudo-
mnemonics corresponding to a special use case of some instructions. This is for
instance the case in the Xeon Phi coprocessor instruction manual for the vector
comparisons instructions VCMPPS/D, for which an immediate operand specifies the
type of comparison to perform between the other operands. The documentation
defines pseudo-mnemonics for each possible comparison, such as VCMPEQPD/S or
VCMPLTPD/S, corresponding to a given value of the immediate operand. This gives
one example of the case of a production being a restricted case of another.

As noted in 2.2.4.2, Intel 64 is also a good example of architectures whose evo-
lutions require significant updates to existing disassemblers, as each instruction set
adds new encoding rules. For instance, the SSE extension brought the use of legacy
prefixes as being mandatory for some instructions, while the AVX extension in-
creased the size of the instruction set by 10% and added a new multibyte prefix
mandatory for its instructions, as well as the possible use of the field normally used
for storing immediate values to represent a register operand.

3.2.2.2 Challenges of the ARM architecture

The ARM architecture presents different challenges tied to its use of fixed length
instructions, as this allows the encoding rules to use any bit in an instruction coding
to distinguish it from others.

A significant number of ARM instructions may not accept some operand values
or combination of operands; for instance multiple instructions do not accept register
pc (index 15) as an operand. The encoding rules for ARM instructions may however
allow to use the coding that would correspond to the instruction using this operand
to represent a completely different instruction instead; in the case of instructions not
accepting register pc as operand, this would mean that setting the field containing
the encoding of the register operand to the binary value 1111, which would be the

3.3. Representation using a grammar formalism 25

index of the pc register, would have the resulting coding encode another instruction.
This can also occur for instructions not accepting a combination of operands, such
as having two identical register operands. It is also possible for different instructions
to accept a very similar encoding, distinguished only by a bit located near the end
of the expression, while only some of those instructions present restrictions with
regard to the values of operands.

Therefore, a formalisation of the encoding rules as a grammar needs to take into
account those different possibilities, while avoiding duplication of lines as it could
lead to a combinatorial explosion.

3.2.3 Additional information

The parser being intended for use by analysis tools, it is important to ensure that
its output is able to provide the most complete possible information regarding the
architecture. Every information deducible from the documentation and common
to all architectures should therefore be available to allow most analyses to remain
architecture independent. This information should be added to the grammar for
simplified maintenance by keeping it as a single entry point.

3.3 Representation using a grammar formalism

We will describe here our solutions for representing the binary encoding rules of
instructions as a grammar. We will also present the algorithm for building the
associated parser as a FSA and an improvement of this algorithm allowing to handle
more grammars. We will also present the algorithm of the parser.

In the remainder of this document, we will use the term bit field for any combina-
tion of bits of fixed or unfixed value appearing in the expression of binary encodings.
The character x in the expression of such a bit field represents a bit whose value
is not fixed, or unfixed bit. When referring to individual bits in a bit field f , the
notation f [i] represents the bit of rank i, the leftmost bit being of rank 0.

3.3.1 Concepts

The lack of priority between the expression of instructions allows the use of a context-
free grammar. However, we will have to be able to handle the cases of symbols
containing unfixed bits whose expression can overlap with symbols expressed with
less unfixed bits. This case may occur not only for whole symbols but for parts of
the bit fields appearing in their productions. We handle this by adding a notion of
priority between bit fields.

3.3.1.1 Terminal symbol

When building the FSA associated to the parser, we will consider bit fields of any
length as terminal symbols. This means that, for the purpose of building the FSA,
a terminal symbol may encompass multiple symbols as they appear in the grammar.

For instance, let us consider the production: A 7→ 0000 t 111 S, where t is a
token of size 4, and S a nonterminal symbol. When building the FSA, the production
will be considered as: A 7→ 0000xxxx111 S, with 0000xxxx111 being handled as a
single terminal symbol.

26 Chapter 3. Generation of a generic binary decoder and encoder

3.3.1.2 Matching bit fields

We will be using the concept of matching bit fields, especially for transition values.
Two bit fields are said to be matching if both can take identical values. More
formally, bit fields f1 and f2 match if:
∀i, either f1[i] = f2[i], or f1[i] = x, or f2[i] = x.

3.3.1.3 Binary fields ordering

We will add a notion of priority through a partial order for matching bit fields,
according to which a bit field will be superior to the bit fields that represent one or
more of its possible values. More formally, the order is defined through the following
rules:

• For single bits, 0 < x and 1 < x

• For f1 and f2 two bit fields, l being the length of the shortest one:

f1 < f2 ⇐⇒ ∀i, f1[i] ≤ f2[i] and ∃i < l/f1[i] = x or f2[i] = x

For example, if bit field f1 has value 1100 and bit field f2 has value 11xx, then
f1 < f2. Bit field f3 with value 10xx has no order relation with either f1 or f2 as it
does not match with either of them.

This partial order can be said to follow the imprecision of bit fields, as bit fields
with more unfixed bits on the considered length are of higher order.

We also make the postulate that, for t1 and t2 two bit fields to be ordered, at
least one of the following propositions is true:

• ∃i < l / t1[i] 6= t2[i] with t1[i] and t2[i] ∈ {0, 1}

• t1 < t2, or t2 < t1

This means we suppose no bit fields such as x11x and 0xx0 would appear when
we have to order them. For such a case to occur, an architecture would need to
contain two different instructions with the same beginning, but at one point one of
them would be storing indefinite values in its coding where the other stores fixed bits,
and vice versa. This would prevent a successful parsing by the processor decoder.

3.3.1.4 Semantic actions

The semantic actions are defined for each production and represent the operations to
execute when performing the corresponding reduction. A semantic action appears
as a single function whose parameters can either be constants or values retrieved
from the reduction. This allows to choose the language and implementation of the
action independently of the grammar, and therefore to implement multiple different
uses of the parser from a single grammar file.

When the symbol represents an instruction, some of the macro parameters are
mandatory and represent characteristics of the instruction common to all architec-
tures. These parameters include the following information:

• Instruction mnemonic

• Subset to which the instruction belongs if the architecture uses more than one

• Family of the instruction. This regroups the following information:

3.3. Representation using a grammar formalism 27

– Type of operation performed

– Possible impact on the control flow.

– Conditional nature of the instruction

– Vectorial nature of the instructions

– Size of manipulated data

These parameters can be safely ignored when implementing the action if the parser
is used to perform basic disassembly, but are essential for more detailed analyses
such as the reconstruction of the CFG.

3.3.2 FSA building algorithm

The algorithm for building the FSA is close to the standard, as described for instance
in [36], but including the concepts defined in Section 3.3.1.

3.3.2.1 States generation

The automaton is a set of states and transitions between states. It can be seen as
a graph whose nodes are the states and edges the transitions.

A state corresponds to every grammar productions that could be in the process
of being reduced at this stage of the parsing. It contains a list of one or more items,
which are a combination of one possible production for a symbol from the grammar
and a position inside this production that we will design as the item step. This
list contains every possible productions in the grammar to the reduction of which
the state corresponds. For example, the item A 7→ B. 10 C represents the step of
reducing the production A 7→ B 10 C after having reduced the symbol B.

Transitions are identified by their value, which can be any grammar symbol
(using the definition of terminals from 3.3.1.1) or an empty value. As a convention
when describing the automaton and its generation, we will consider states to contain
a list of transitions, which are all the transitions leading away from this state, and
transitions to contain the state to which they point.

For a reduction state, the step of the item it contains is at the end of the produc-
tion. Reaching such a state means the FSA can reduce the corresponding symbol.
For instance, the state containing the item A 7→ B 10 C. means the A symbol can
be reduced from its B 10 C production.

For a shift state, none of the items it contains have their step at the end of the
production. Such a state must contain at least one transition.

The states are built recursively from the state corresponding to the first step of
the production of the grammar start symbol as described in algorithms 1 and 2.

3.3.2.2 Coherence tests

Once all the states are created, they are tested for uniqueness in order to reduce the
automaton. Two states are considered equal if they contain the same list of items,
which means they correspond to the same step in the decoding of an instruction.
If a state S2 is found equal to another state S1, S2 is removed and all transitions
pointing to it are redirected to S1.

The states are then checked for overlapping transitions. Two transitions over
terminals and belonging to the same state are said to overlap if the bit fields repre-
senting their respective values are identical over the shortest length between both.

28 Chapter 3. Generation of a generic binary decoder and encoder

Algorithm 1 Automaton states generation.
Require: grammar
1: states_list ← empty
2: first_item ← “grammar 7→.start_symbol”
3: first_state ← NewState()
4: AddToList(first_state.item_list, first_item)
5: AddToList(states_list, first_state)
6: ExpandState(first_state) {ExpandState is described in algorithm 2}
7: for each state in states_list do
8: for each item in state.item_list do
9: if IsNotEndStep(item) then

10: next_symbol ← NextStepSymbol(item) {B if item is A 7→.B C}
11: next_item ← NextStepItem(item) {A 7→B.C if item is A 7→.B C}
12: if ListContains(state.transition_list, next_symbol) then
13: AddToList(found_transition.next_state.item_list, next_item)
14: else
15: new_state ← NewState()
16: AddToList(new_state.item_list, next_item)
17: new_transition ← NewTransition()
18: new_transition.value ← next_symbol
19: new_transition.next_state ← new_state
20: AddToList(state.transition_list, new_transition)
21: end if
22: end if
23: end for
24: for each transition in state.transition_list do
25: ExpandState(transition.next_state)
26: if ListContains(states_list, transition.next_state) then
27: DeleteState(transition.next_state)
28: transition.next_state ← found_state
29: else
30: AddToList(states_list, transition.next_state)
31: end if
32: end for
33: end for

More formally, using the notation tla→b to represent a transition of length l from
state a to state b, if l and L are two transition lengths such that l ≤ L:

TL
s→sL

overlaps tls→sl
⇐⇒ ∀i < l, TL

s→sL
[i] = tls→sl

[i].
In this case, new transition τL−lsl→sL

is created with a value composed of the
rightmost L− l bits from TL

s→sL
. The original transition TL

s→sL
is then deleted.

For example, if a state contains transition t2s→s1 over bit field 00 and transi-
tion t5s→s2 over bit field 00111, transition t3s1→s2 over bit field 111 is created while
transition t5s→s2 is deleted.

Finally, coherence checks are performed on the FSA states:

• Transition values in a shift state must be unique. For the purpose of this test,
unfixed bits are considered to be distinct from fixed bits, so for instance the
values 00x0 and 00xx are considered different.

3.3. Representation using a grammar formalism 29

Algorithm 2 Automaton state expansion.
Require: state: State to expand with at least one item in state.item_list
1: for each item in state.item_list do
2: next_symbol ← NextStepSymbol(item)
3: if IsNonTerminal(next_symbol) then
4: for each production in grammar where next_symbol is the head do
5: new_item ← NewItem(production) {A 7→.B C for A 7→B C}
6: if IsEmpty(production) then
7: new_state ← NewState()
8: AddToList(new_state.item_list, new_item)
9: new_transition ← NewTransition()

10: new_transition.value ← EmptyValue()
11: new_transition.next_state ← new_state
12: new_transition.length ← ∞
13: AddToList(state.transition_list, new_transition)
14: AddToList(states_list, new_state)
15: else
16: AddToList(transition.next_state.item_list, new_item)
17: end if
18: end for
19: end if
20: end for

• Reduction states must contain only one item and no transition.

The uniqueness of transition values should be ensured by construction and the han-
dling of overlapping transitions. The existence of a reduction state containing more
than one item corresponds to a multiple reduction conflict and is due to the gram-
mar allowing identical binary expressions to represent different symbols. Similarly,
such a state containing at least one transition corresponds to a shift/reduce con-
flict, which is due to a binary expression representing a symbol and part of another.
These two types of conflict are due to ambiguities in the grammar, which must be
fixed accordingly.

3.3.2.3 Example

We will consider a simplified grammar whose start symbol A accepts 4 productions,
one of them involving another nonterminal B. Two tokens, c and d, of respective size
4 and 1 bit, are also used. The grammar is expressed as follows, with the semantic
actions not represented:

%token 4 c
%token 1 d
B:
11 d d
;
A: 1100 c
| 1101 000 d
| 1101 B
| 1100 1100

30 Chapter 3. Generation of a generic binary decoder and encoder

;

We will use simple graphs to represent automaton states, using the transitions as
edges. In the first iteration of automaton generation, whose corresponding graph is
displayed on figure 3.1, the first state contains the four following transitions:

T1: 1100xxxx -> S1
T2: 1101000x -> S2
T3: 1101 -> S3
T4: 11001100 -> S4

Figure 3.1: First iteration of the FSA generated from the sample grammar.

Since transition T2 overlaps transition T3, it is deleted during the second itera-
tion and a new transition over 000x is added to S3. The transitions are then ordered
using the relative order described in Section 3.3.1.3, leading to the less precise value
of T1 to be moved after T4.

The final transitions for state S0 are then:

T4: 11001100 -> S4
T1: 1100xxxx -> S1
T3: 1101 -> S3

The final version of the automaton is shown on figure 3.2.

Figure 3.2: Second iteration of the FSA after splitting overlapping transitions.

3.3. Representation using a grammar formalism 31

3.3.3 Parsing algorithm

The parsing algorithm is close to the standard of a FSA built for a LR(0)-parser.
The main difference is that the order we imposed on transitions must be the order
into which they are tested when deciding which state will follow the current one.
This ensures that the more general transitions, with the most unfixed bits in their
respective values, will be tested last, and constitute as such an “else” case to the
more precise transitions.

3.3.3.1 Storing transitions

The transitions in a state are distinguished between those on a reduced grammar
symbol and those on a binary value. Transitions over reduced nonterminal symbols
are stored into direct tables indexed on unique identifiers of the symbols, containing
the identifier of the next state associated to this transition value. If a state does
not contain a transition over a symbol, the corresponding cell in the table contains
a special identifier indicating a match failure. In the case of transitions over binary
values, the use of a global hash table for speeding up the process was not directly
possible here since transitions need to be tested in a given order. In order to ensure
better parsing performance, it was necessary to find an alternative to avoid having
to test each transition one after another.

The solution involved matching transitions byte after byte, allowing the use of
direct tables. To achieve this, transitions over values in a given state are broken
down into a series of sub values of identical length for a given index in the transition.
The length of the sub values at a given index is the shortest value between 8 bits and
the difference between this index and the transition length immediately superior.

A sub value is identified by its value and its mask, which specifies which bits in
the value are fixed (the corresponding bit in the mask is set to 1 if the bit is useful,
0 otherwise). Sub values of identical length, index, and preceding sub values are
grouped into a table.

A sub value references either a pointer to the table of the sub values that could
follow it, or the identifier of the next state if the sub value was the last in a transition.

A list contains all the sub values that could take a given value because of the
masks, in the same order the corresponding transitions were ordered in the state.

A table of sub values is a direct hash table containing lists of sub values. Sub
values containing unfixed bits appear in multiple cells of the table.

3.3.3.2 Post-parsing actions

In addition to semantic actions, which are performed after reducing a given pro-
duction, the parser offers to define actions to execute after the successful parsing
of a whole word. When the parser is used in a disassembler, a parsed word is an
assembly instruction, and it is possible to know precisely which variant from the
instruction set at the time of the parser construction. This allows to define actions
depending on the mnemonic and operand types of the instruction, which can be
used to complement the representation of the instruction or execute specific actions.

3.3.3.3 Parsing a stream

During the parsing of a stream, the automaton processes the bits from the current
offset. Once the parsing is complete, either because a word has been parsed or a

32 Chapter 3. Generation of a generic binary decoder and encoder

parsing error occurred, the automaton is reset and prepares to decode the next word.
In a parsing error occurred, the minimal size of an instruction for the given

architecture is automatically skipped before resuming the parsing, otherwise the
parser attempts to decode the bits immediately following the end of the previously
decoded word. It is however possible to reset the parser anywhere in the stream
before parsing the next word. This is useful for instance if the parser is used in
a disassembler that does not process the file sequentially or if parsing errors must
have a special handling.

When a word is successfully parsed, its associated post-parsing action is auto-
matically triggered if it exists.

The parsing of a word is described in detail in algorithms 3, 4 and 5.

Algorithm 3 Parsing of a word with the FSA.
Require: InputStream: Byte stream to parse
Require: MinWordSz: Minimum size in bits of a word for this grammar
1: parse_error ← false
2: EmptyStack(states_stack)
3: EmptyStack(semantic_actions_stack)
4: Empty(symbol_values)
5: post_parsing_action ← None
6: reduced_symbol ← None
7: while StackTop(states_stack) 6= final_state do
8: if IsShiftState(StackTop(states_stack)) then
9: ProcessShiftState(StackTop(states_stack)) {Cf. algorithm 4}

10: else
11: ProcessReducState(StackTop(states_stack)) {Cf. algorithm 5}
12: end if
13: end while
14: if parse_error == false then
15: for each action in semantic_actions_stack do
16: ExecuteAction(action)
17: end for
18: ExecuteAction(post_parsing_action)
19: else
20: SkipsBits(InputStream, MinWordSz)
21: end if

3.3.4 Extended FSA building algorithm

There are cases where a LR(0) parser can not be built if the grammar contains sym-
bols whose productions are distinguished from one another by a terminal following
nonterminals with matching productions. Such a grammar, while valid, will produce
shift/reduce conflicts.

Let us consider the following productions:

A: B 00 | C 11
B: 01 | 10
C: 01 | 11

3.3. Representation using a grammar formalism 33

Algorithm 4 Handling a FSA shift state.
Require: state: Shift state to process
Require: reduced_symbol: Previously reduced symbol
1: if reduced_symbol 6= None then
2: if TransitionMatch(state.symbol_transitions, reduced_symbol) then
3: StackAdd(states_stack, matching_transition.next_state)
4: reduced_symbol ← None
5: else
6: parser_error ← true
7: end if
8: else
9: subtable ← state.sub_values

10: next_state ← Unknown
11: while next_state == Unknown do
12: test_bits ← ExtractBits(InputStream, subtable.values_bitlength)
13: if input_stream.bitlength < subtable.values_bitlength then
14: parser_error ← true
15: end if
16: if TransitionMatch(subtable, test_bits) then
17: if NumberElements(matching_sublist) == 1 then
18: submatch ← true
19: subvalue ← matching_sublist.value
20: else
21: if TransitionMatchInList(matching_sublist, test_bits) then
22: submatch ← true
23: subvalue ← first_matching_value
24: else
25: parser_error ← true
26: end if
27: end if
28: else
29: parser_error ← true
30: end if
31: if subvalue.next_state 6= None then
32: next_state ← next_state
33: else if subvalue.next_subtable 6= None then
34: subtable ← next_subtable
35: end if
36: end while
37: if parser_error == false then
38: StackAdd(states_stack, next_state, test_bits)
39: SkipsBits(InputStream, test_bits.bitlength)
40: end if
41: end if

These productions are coherent and can be expanded without conflict into the
values: 0100, 1000, 0111, 1111. However, when building an FMA as described
in Section 3.3.2.1, the transition on the 01 bits in the state generated from the

34 Chapter 3. Generation of a generic binary decoder and encoder

Algorithm 5 Handling a FSA reduction state.
Require: state: Reduction state to process
1: for each element in states.reduction do
2: if IsToken(element) then
3: value ← element.bits
4: StoreToken(symbol_values, element.token_name, value)
5: end if
6: StackRemoveTop(states_stack)
7: end for
8: StackAdd(semantic_actions_stack, states.reduction.semantic_action)
9: if state.post_parsing_action 6= None then

10: post_parsing_action ← state.post_parsing_action
11: end if
12: reduced_symbol ← states.reduction.head
13: if reduced_symbol = start_symbol then
14: StackAdd(states_stack, final_state)
15: end if

productions of the A symbol will produce a shift/reduce conflict, as it will not be
possible to know whether the B or C symbol must be reduced without checking the
following bits.

This case occurs in binary architectures such as Intel Itanium, where instruction
bundles are of a fixed 128-bits length, and differentiated on the last 5 bits, while
possibly containing overlapping values and symbols in the previous bits. It is also
the case in ARM architectures, especially if the grammar uses different nonterminal
symbols to represent the fields encoding register operands for which certain values
are excluded.

These kind of conflicts can be resolved with the use of an extension of the LR
parser performing the validation of a transition by looking more symbols ahead,
which is similar to the LR(x) parser. Such an extension is harder to implement for
binary code because of the variable length of the terminal symbols, and is usually not
possible for architectures where instructions are of different lengths. The adopted
solution attempts to use an agnostic approach allowing the same algorithm to be
used on grammars representing all types of architectures.

3.3.4.1 New concepts

The extended parser redefines some of the concepts used in Section 3.3.2.1.

States A state is here uniquely defined as a list of items and a number of bits
matched ahead of the items steps. The step of an item can also be located inside a
terminal. It is considered that all bits preceding the items step have been successfully
matched, while the bits tested ahead are not contiguous to the position of the step
and may not be contiguous with one another. For shift state, a mask of bits to test
is calculated from the items it contains, which will be used to generate its transitions
over terminals. The tested bits of a state are generated from the tested bits of the
preceding state updated by the bits from the transition value leading to it.

3.3. Representation using a grammar formalism 35

Transitions A transition over a terminal can now contain gaps between the bits.
They correspond to the testing of only some of the bits following the position of
the parser. The transitions over terminals from a given state all contain the same
number of bits and gaps and are generated from the mask of bits to test for this
state applied to its list of items.

Symbol sizes The implementation relies on the computing of the size of symbols.
The size of a symbol is the sum of the sizes of all the terminal and nonterminal
symbols of its productions. A symbol is flagged as being of variable size either if
two of its productions have different sizes, or if at least one symbol in one of its
productions is of variable size.

3.3.4.2 States generation

The main difference in this version of the parser generation resides in the algorithm
for expanding states. The derivation of the items they contain is performed recur-
sively until a valid mask of bits to test is found for all items. Items are distinguished
between non derivable items, for which the symbol following the step is a terminal,
and derivable items, for which this symbol is a nonterminal. Non derivable items are
always taken into account for generating the mask, while derivable items are used
only if they would not cause the mask to be emptied and are derived otherwise.

This mask is calculated by comparing bits between the step and the first non-
terminal of unfixed size or the end of the production in all items contained in the
state in order to find those that have a fixed value for every item. Derivable items
are included in this calculation only if they contain at least one such eligible bit at
the same index from the step as the other items. The generation of the mask from
the list of items obeys the following rules:

• Nonterminals of fixed size occurring in at least one item are represented in the
mask by gaps (ignored bits) of the same size.

• Bits fixed in all items are marked as to test in priority.

• Bits unfixed in at least one item are removed if the mask contains at least one
bit marked as to be tested in priority.

Since transitions over terminals are all generated from the same mask, the han-
dling of overlapping transitions described in 3.3.2.2 is unnecessary.

A shift/reduce state, containing a single reduction item and at least one tran-
sition, is valid in the extended algorithm if the transitions over terminals do not
cover all possible values reachable with the state mask. It is handled as a shift state
defaulting to a reduction state if none of the transitions match.

The expansion of states for the extended parser is described in algorithm 6.

3.3.4.3 Storing transitions

The breakdown of transitions over terminals as described in 3.3.3.1 is modified
to ensure that the most significant parts of transitions are tested first, instead of
matching bytes sequentially. This is done by detecting among all transitions in a
state the bits whose value is unfixed or ignored for a minority of transitions, then
using this order to build the bytes used for breaking down transitions into sub values.
The storing of sub values into tables is otherwise unchanged.

36 Chapter 3. Generation of a generic binary decoder and encoder

Algorithm 6 Extended automaton state expansion.
Require: grammar: The grammar for which the automaton is being built
Require: state: State to expand with at least one item in state.item_list
1: testmask ← EmptyValue()
2: derivable_list ← EmptyList()
3: for each item in state.item_list do
4: if IsDerivable(item) then
5: AddToList(derivable_list, item)
6: else
7: testmask ← UpdateMask(testmask, item)
8: end if
9: end for

10: repeat
11: derivation_occurred ← false
12: OrderList(derivable_list) {Order by increasing distance from the step to

first fixed bit and decreasing distance between step and end of production or
first nonterminal of unfixed length}

13: for each item in derivable_list do
14: if UpdateMask(testmask, item) == EmptyValue() then
15: for each production in grammar where NextSymbol(item) is head do
16: new_item←NewItem(production) {Same derivation as described in

algorithm 2}
17: if IsDerivable(new_item) then
18: AddToList(derivable_list, new_item)
19: else
20: testmask ← UpdateMask(testmask, new_item)
21: end if
22: end for
23: RemoveFromList(derivable_list, item)
24: derivation_occurred ← true
25: else
26: testmask ← UpdateMask(testmask, item)
27: end if
28: end for
29: until derivation_occurred == false
30: state.testmask ← testmask

3.3.4.4 Example

Let us consider the following grammar:

Start: A B 01 | 000000 | C
A: 00 | 01
B: 00 | 10
C: 111111 | 110110

The parser generation algorithm described in 3.3.2.1 would cause a shift/reduce
conflict, as an input beginning with bits 00 could be interpreted either as the be-
ginning of the Start->000000 production or as the A->00 production.

3.3. Representation using a grammar formalism 37

With the extended parser generation algorithm, the first generated state will
contain the following items:

Start->.A B 01
Start->.000000
Start->.C

Using symbol ’?’ to represent a bit to be tested, the generation of the mask of bits
to test for this state will take the following steps:

1. Initialisation from the non derivable items to the value 000000

2. Merging with derivable item Start->.A B 01 results in value ____0?

3. Merging with derivable item Start->.C would blank the mask: the item is
derived and excluded from further calculations

4. Merging with newly added item C->.111111 results in final value ____??

The final version of the automaton is shown on figure 3.3.

Figure 3.3: Automaton generated through the extended algorithm.

3.3.4.5 Extended parser execution

The execution of the extended parser is close to the description presented in 3.3.3.3.
The main difference consists in the extraction of bits from the input stream,

which may involve the retrieval of distinct bits or groups thereof and not immediately
following the current position of the parser.

Hybrids shift-reduce states are handled as shift states, with an additional step
consisting in saving the parser state to a stack. A subsequent failure to match any
of the transitions will cause the reloading of the parser state from this stack and
the execution of the reduction from the shift/reduce state instead of raising a parser
error. This stack is emptied after the successful parsing of a word.

38 Chapter 3. Generation of a generic binary decoder and encoder

3.4 Minjag

In order to validate the principles detailed in Section 3.3, we implemented the tool
Minjag, which allows to parse a grammar and generate the associated parser ac-
cording to the algorithms described in that section.

Minjag includes a script allowing to build a grammar from the list of instruc-
tions of a given architecture through simple transformations. In order to keep the
grammar as a single entry point for defining the architecture, additional information
about the architecture is also stored into the header of the grammar file. This infor-
mation includes the names and types of registers used by the architecture, and the
maximum and minimum sizes in bits of an instruction, which may not be possible
to deduce from the grammar if it contains recursive symbols. Minjag then parses
the grammar and builds an FSA for a LR parser following the extended generation
algorithm described in 3.3.4, then generates the code needed to execute it, defining
the states and transitions of the FSA as C structures.

Minjag also parses the semantic actions, which must follow the constraints de-
scribed in 3.3.1.4. It then generates definitions of C macros for each semantic action,
and provides a list of those definitions among the generated files. The generated
FSA is built so that, if a macro is defined, its associated code will be executed
whenever the corresponding semantic action must be triggered. This is used to de-
fine actions to perform during disassembly without impacting the grammar or the
parsing process, allowing to define a grammar file for a given architecture once and
be able to adapt its associated parser to different applications.

Minjag provides a list of macros allowing to define the post-parsing actions if
needed (cf. 3.3.3.2). It also generates files defining structures characterising the
architecture, allowing to easily retrieve the names of mnemonics, types and size of
registers, or additional information about the behaviour of instructions. Finally,
Minjag generates the code for an encoder for the architecture, described in 3.4.3.

The grammar format accepted by Minjag is described extensively in annex A.3.
It is close to the Backus-Naur format [77] used for context-free grammars.

Minjag was able to process grammars representing the Intel 64, Intel Xeon
Phi coprocessor and ARM architectures. Table 3.1 presents general metrics on the
description of the currently existing architectures.

Architecture Intel 64 Intel Xeon Phi ARM
Lines in instruction list 2,398 1,194 1,512
Lines in grammar 6,082 3,082 1,491
Reduction states 5,950 2,406 1,625
Shift states 4,019 1,468 2,916
Shift/reduce states 2 2 6
Total states 9,971 3,876 4,547

Table 3.1: Characteristics of the grammar and resulting FSA for the Intel 64, Intel
Xeon Phi coprocessor, and ARM architectures.

3.4.1 Specificities of the Intel architectures

Minjag is able to process a grammar addressing the particular challenges of Intel
architectures presented in 3.2.2.1.

3.4. Minjag 39

Legacy prefixes are represented through a separate symbol for each family. In-
structions for which a prefix of a given family is mandatory are grouped under the
same symbol. The productions corresponding to the encodings of those instructions
do not contain any such prefix. These symbols are then used in the productions
of higher-level symbols corresponding to encodings containing one prefix family.
By combining these symbols, it is possible to represent the random order of those
prefixes. Since the grammar supports left recursion, it is also possible to handle
multiple instances of an identical prefix. Below is a simplified example using only
two prefix families, where the productions corresponding to encodings of prefixes or
instructions and the semantic actions are not represented.

Start:Legacy1 Insn_Legacy1 | Legacy2 Insn_Legacy2 | Insn_NoLegacy;
Insn_Legacy1: Legacy2 Insn_Legacy1_2 | Insn_NoLegacy;
Insn_Legacy2: Legacy1 Insn_Legacy1_2 | Insn_NoLegacy;
Insn_Legacy1_2: <instructions for which both families are mandatory>;
Insn_NoLegacy: <instructions for which both families are optional>;

The partial order of matching bit fields allows to directly represent the opcodes
that are restricted cases of other instructions as well as the ModR/M byte with a
minimal level of complexity.

Below is a simplified extract of the grammar for Intel 64:

%token <3,b> reg
%%
template: Legacy3 Insn #[FULLINSN($1,$2)]#
| Legacy3 template #[FULLINSN($1,$2)]#
| Insn #[FULLINSN($1)]#;
MemModRM: 00 reg RMSIB_00 #[REG_MEM($1,$2)]#
|01 reg RMSIB_01 #[REG_MEM($1,$2)]#
|10 reg RMSIB_10 #[REG_MEM($1,$2)]# ;
RegModRM: 11 reg RMSIB_11 #[REG_REG($1,$2)]# ;
Insn: 00010000 RegModRM #[INSN(ADC,ADD,NA,REG($1),REG($1))]#
|REX 00010000 MemModRM #[INSN(ADC,ADD,NA,REG($1,$2),MEM($1,$2))]# ;

In this example, the reg symbol is declared as a token of length 3 with significant
bit first endianness. The template symbol is the start symbol of the grammar. It
indicates that the Insn symbol accepts an optional prefix, defined as the Legacy3
symbol (not represented in this extract), possibly repeated. The semantic actions
associated to the Insn symbol productions correspond to instructions. In the ex-
ample, the lines present describe the ADC mnemonic, which belongs to the family of
ADD operations, and the NA constant indicates it has no impact on the control flow.

The shift/reduce states allow to handle the case of macro instructions repre-
senting multiple instructions. Those states contain a reduction corresponding to
the first instruction, while the transition corresponds to the next instructions in
the macro. During parser execution, matching on the transitions will result in the
continuing processing of the macro instruction, while a matching failure will result
in the reduction of the first instruction of the macro only. The reduction of the next
instructions in the macro only is performed by another state.

Figure 3.4 presents a simplified version of a generated FSA containing an example
of the handling of a macro instruction. The instructions used in this example are
FWAIT with coding 0x9B, FNINIT with coding 0xDBE3 and macro instruction FINIT
with coding 0x9BDBE3, all from the x87 instruction subset.

40 Chapter 3. Generation of a generic binary decoder and encoder

Figure 3.4: Part of an automaton handling instructions FWAIT, FNINIT and
the macro instruction FINIT. State 1 is a shift/reduce state; if the transition
over value 1101101111100011, which would lead to the reduction of symbol
100110111101101111100011 corresponding to macro instruction FINIT, fails, sym-
bol 10011011 (FWAIT) is reduced instead.

3.4.2 Specificities of the ARM architectures

The extended FSA generation algorithm allows Minjag to process a grammar ad-
dressing the particular challenges of ARM architectures presented in 3.2.2.2.

Bit fields that do not accept some values, used to represent the encoding of
operands for which certain values are excluded, are represented as different symbols
containing all possible values of the bit fields as productions. For instance, the
symbol representing the 4 bits field for coding a register operand for which the pc
register (index 15) is not a valid option contains for productions all 4-bits expressions
except 1111. Those symbols were used appropriately in the productions representing
instructions for which an operand or combination of operands was not valid.

The possibility for transitions to contain non contiguous bits allows Minjag to
handle encodings distinguished by bits located near the end of the production.

3.4.3 Assembler generation

The format chosen for the grammar also allows to use the same file to generate
the source files of an encoder which can be used to build a simplified assembler. It
functions on the same principles as a packrat parser [59].

3.4.3.1 Building the encoder

The encoder is built by reversing the behaviour of the grammar semantic actions
and productions.

A reversed semantic action is responsible for checking whether a given input
matches with what the action represents in the grammar, and for extracting from
it the information needed to build the binary expression.

Encoding rules are defined for each grammar symbol and consist in a list of
reversed semantic actions representing its possible productions. If the architecture
allows for multiple instruction sizes, this list is ordered by increasing size of the
resulting binary expression to emulate the behaviour of mainstream assemblers.

A special mechanism handles the case where the input of the encoder is not a
production of the start symbol of the grammar, which occurs for instance with our

3.4. Minjag 41

grammar for Intel 64 due to the way legacy prefixes were handled. In that case, a
path to the start symbol is built, and an upward encoding rule is created from the
corresponding list of reversed semantic actions.

Finally, Minjag generates for each instruction a list of reversed semantic actions
consisting in the possible encodings for this instruction, which will be used as entry
point. This allows to handle an instruction to be encoded as another grammar
symbol, using this list as its encoding rules.

3.4.3.2 Encoder execution

When run as an assembler, the encoder input is a structure representing the in-
struction to be assembled. The list of encoding rules associated to this mnemonic
is retrieved, and the encoder attempts to process its input following the same algo-
rithm as for encoding a symbol. This consists in attempting to match the input with
each of the encoding rules, then complement the encoding with the data returned
by the reverse semantic action and encoding the nonterminals from the associated
production. This recursive process is detailed in algorithms 7 and 8.

Algorithm 7 Encoding a symbol.
Require: symbol: Representation of data to encode as a grammar symbol
1: encoding ← null
2: for each rule in symbol.encoding_rules do
3: if RuleMatches(rule, symbol) then
4: ApplyRule(rule, symbol, encoding) {Cf. algorithm 8}
5: end if
6: end for
7: if encoding 6= null then
8: for each rule in symbol.upward_encoding_rules do
9: ApplyRule(rule, symbol, encoding) {Cf. algorithm 8}

10: end for
11: end if
12: return encoding

The result is a structure representing the binary encoding of the instruction, or a
null value if it was not found to be matching a valid instruction for this architecture.

3.4.4 Grammar checks and debugging

During its parsing of the grammar, Minjag performs a certain number of checks
to ensure that basic consistency constraints are obeyed by the grammar and au-
tomatically handles some of them to allow avoiding common errors during FSA
generation.

In particular, Minjag automatically detects identical productions of a given
symbol. These cases are logged, and those duplicates are discarded from the lists
of productions when building the parser. The associated semantic actions are how-
ever preserved and taken into account when generating the encoder as described
in 3.4.3. This allows to support the case of different mnemonics or instructions
performing identical operations by eliminating the redundant expressions from the
parsing options while supporting all of them for encoding.

42 Chapter 3. Generation of a generic binary decoder and encoder

Algorithm 8 Applying a successful reverse semantic action.
Require: symbol: Representation of data to encode as a grammar symbol
Require: encoding: Partial encoding of the symbol
1: for each element in rule.production do
2: if element.type == terminal then
3: AddCoding(encoding, element)
4: else if element.type == nonterminal then
5: element_code ← EncodeSymbol(element) {Cf. algorithm 7}
6: if element_code 6= null then
7: AddCoding(encoding, element_code)
8: else
9: encoding ← null

10: end if
11: end if
12: end for
13: return encoding

Minjag performs additional coherency tests on the grammar and logs the re-
sults. These include the detection of symbols not reachable from the start symbol,
which causes a warning, and of symbols appearing in productions that are undefined
as either nonterminals or tokens, which causes an error. Errors are also logged if
the consistency checks performed on the resulting FSA (cf. 3.3.2.2) fail.

Finally, Minjag can generate a file describing the states of the generated au-
tomaton, including the transitions and items each of them contain, along with the
associated grammar lines. This file can be useful for debugging the grammar when
FSA consistency checks fail by allowing to pinpoint the overlapping productions
causing shift/reduce or multiple reduction errors.

3.4.5 Exhaustive tests of architecture representation

The list of instructions the grammar represents can be subjected to similar transfor-
mations to generate test files containing exhaustive combinations of the architecture
mnemonics and operands. This allows to build a library of all possible instructions
existing in the architecture. Such a library allows to serve two purposes:

• Check the validity of the instruction list

• Check the validity of the generated grammar

Checking the instruction list can be necessary as documentations can contain
errors or imprecisions. By generating assembly files and attempting to run them
through an assembler like GNU gas, it is possible to detect by catching assembly
errors the instructions that were incorrectly represented in the list, either in their
coding or in their acceptable operands. Further tests could involve the generation
of executables from these assembled files in order to detect instructions that were
assembled into code actually not supported by the processor.

The validity of the grammar can be checked by attempting to disassemble the
assembled files with the parser and comparing the result with the original assembly
input. Parsing errors or divergences with the assembly code will signal errors in
the representations of instructions in the grammar. Comparisons with the assembly

3.5. Conclusion 43

input requires being able to detect special cases such as homonyms, since different
mnemonics with identical coding will be disassembled as the same mnemonic in each
instance, causing a difference with input without the parser being faulty.

For architectures accepting a large number of instructions and/or operands per
instruction, the complete list of possible instructions can be excessively large. In
these occurrences, the generation needs to be restricted to cases significant for the
purposes of testing; it is for example not necessary to generate instructions whose
encoding differs from others by a clearly identified number of bits, such as the
encoding of a register operand.

As an example, such a significant subset of the possible instructions in the Intel
64 architecture numbers approximatively 400,000 instructions, while the equivalent
subset for the Xeon Phi coprocessor architecture, which counts more instructions
using 4 operands, numbers more than 1,200,000 instructions.

3.5 Conclusion

We have presented here a solution for representing instruction sets as a context-
free grammar. The format used and the associated algorithm for generating the
parser allow to take into account the specificities of binary code. This provides
the means for automatically generating parsers for any architecture from a simple
text description of the format and to keep them up to date with the architecture
evolutions. The use of a grammar also allows to adapt the generated parser for
different applications while keeping the same representation of the architecture. We
also presented a functional implementation of these principles as the Minjag tool.
Grammars describing the Intel 64, Intel Xeon Phi and ARM architectures have been
written and validated by Minjag.

In the next chapter, we will present an application of the parser as a disassembler
intended to be used as an entry point by analysis tools. This allows to test the
validity and accuracy of the parser as well as its capacity to be customised to provide
additional information as needed.

Chapter 4

Disassembly of binary files

Disassembling a file consists in the translation of its binary code into assembly
code. In order to facilitate subsequent analysis of the code, this implies being able
to retrieve not only the instructions but also any additional information available in
assembly files and that was preserved in the binary file. For instance, the retrieval
of labels can allow to have a first insight into function boundaries; however, as noted
in 2.3.2.1, not all symbols or assembly directives appearing in a compiler-generated
assembly file are preserved when generating an executable.

The operations performed by a binary disassembler can be broken down into the
following steps:

1. Parsing the file to extract the executable code as well as any additional infor-
mation useful to further code analysis.

2. Parsing the binary code of an instruction and return the corresponding assem-
bly instruction.

3. Parsing a binary stream to return the list of instructions it contains and com-
plement it with any additional information available in the file.

Step 1 is done through a parser of the binary format used for the file. As the
implementation of such a parser is straightforward provided the complete specifica-
tion of the relevant format is available, we will not focus on this part and consider
that all information present in the file is available during the disassembly process.
Section 2.3.3 presents an overview of most binary formats.

Step 2 requires the implementation of a parser for the architecture for which the
binary code is defined. Chapter 3 described how to generate the code of such a parser
from a representation of the architecture. Using this code for a disassembler simply
requires defining the semantic actions of the parser to build structures representing
instructions and containing all information available in the grammar.

Step 3 consists in the successful application of the parser to the extracted binary
code, correlated with any additional information available in the file. This task
can be complicated if the binary code is interleaved with data not representing
instructions, which is possible even though binary formats separate code sections
from data sections. This will be the main subject of this chapter.

Since we intend the disassembler to be used by analysis tools, special care must
also be brought to its performance in terms of speed and precision. Avoiding exces-
sive disassembly times is challenging as analysed programs can contain millions of
instructions but necessary to prevent the disassembly stage from becoming the bot-
tleneck of a potentially lengthy analysis process. Precision is also a crucial factor, as
erroneous instructions could mislead analyses about the behaviour of the program.
Another constraint is the ability to offer an architecture independent abstraction
of the assembly code by ensuring that the base output format of the disassembler
covers the elements common to assembly languages of different architectures.

46 Chapter 4. Disassembly of binary files

In this chapter, we present the challenges of disassembly and our solutions. We
will first focus on the challenges from the application of a parser on a binary stream
in Section 4.1, then describe common algorithms addressing these issues and present
existing disassemblers in Section 4.2. We will then present our solutions in Section
4.3, and their implementation and performance in Section 4.4 and 4.5.

4.1 Disassembly challenges

As noted in 2.2.1, the encoding of binary instructions does not include a separating
character between instructions. Therefore, for architectures accepting instructions
of different lengths, the only way for identifying the beginning of an instruction
is to successfully disassemble the previous one. If the parser used for recognising
individual instructions fails to correctly decode one of them, it may not successfully
identify its end, and thus attempt to disassemble the next instruction while still
in the middle of the coding of an instruction. Such an operation would lead the
disassembler to return at least two erroneous instructions or parsing errors.

4.1.1 Interleaved foreign bytes

Parsing errors can occur if the parser encounters binary data not representing assem-
bly instructions intertwined with the regular binary code. Although binary formats
specify separate sections for executable code and other data, there is nothing to pre-
vent a binary file to mix them. In fact, since the only constraint for the execution
of a program is that the control flow is not interrupted and the executable code is
correctly loaded to memory, it would be possible for the code to be spread anywhere
in the file. In such a case, branch instructions are responsible for keeping the control
flow from reaching addresses not containing executable code.

Since disassemblers operate statically, possibly with no information on the in-
struction set other than their binary coding, they may not detect the role of those
branches and attempt to disassemble bytes that do not actually represent instruc-
tions. This can cause the disassembler to return parsing errors when attempting to
process those areas, or to incorrectly disassemble correct instructions that followed
them as the parser missed their beginning. Conversely, since data bytes can po-
tentially take any value, the disassembler could be able to successfully parse such
a code into an instruction. It would then return an incorrect list of instructions
containing elements that are not actually part of the executable code.

Such disassembly errors may not be detected easily as some binary formats,
especially Intel x86, exhibit properties allowing disassembly to be self-repairing,
as demonstrated in [81] and illustrated in [74]. This means that, if the parser
failed to correctly identify the beginning of an instruction due to one of the cases
described above, it will eventually resynchronise with their proper boundaries and
return subsequent instructions correctly, provided it is still in an area containing
executable code. Architectures where the instructions have a fixed length, such as
ARM or Power ISA, usually also impose constraints on their alignment, ensuring
that the length of any foreign bytes interleaved with code allows to preserve the
alignment of the next valid instructions. If these bytes happen to match the coding
of valid instructions, they will be erroneously decoded as instructions without raising
any parsing errors. It is therefore possible for the disassembler to return little to no
parsing errors while encountering ranges of executable code interleaved with other

4.1. Disassembly challenges 47

foreign bytes, making an automated detection of such areas complex.

Figure 4.1: Example of a disassembly being thrown off course and returning erro-
neous instructions. The code used is Intel 64 with instructions of different binary
length.

Figure 4.1 presents how a disassembler processing sequentially can return er-
roneous results but no parsing errors when attempting to disassemble binary code
not representing instructions, in this case only a single byte long. The self-repairing
properties of Intel 64 can also be observed on this example, as the disassembler is
correctly realigned at the end of the second erroneous instruction. This example
also demonstrates the impact such errors can have on further analyses, as the dis-
assembler returns here a non-existent memory access and an instruction with the
right operands but an incorrect mnemonic.

In most cases, the foreign bytes interleaved with encoded instructions represent
data used by the executable. A code could for instance keep the value of variables
close to the instructions using them for optimisation purposes.

A common occurrence for this is represented by jump tables, which contain
the different possible values for the destination address of an indirect branch (cf.
2.2.3 and [47]). Such tables allow to avoid multiple conditional branch instructions
since only a calculation of the index of the cell in the array is needed to identify
the target. This mechanism can for instance be a straightforward compilation of
a switch statement. Some compilers, like the Intel C compiler icc, use a table
directly present in the code of customised versions of standard functions that are
automatically added to the generated executables.

Another reason for the presence of foreign bytes in executable code is the use
of padding to enforce alignment constraints. Compilers usually achieve this by
inserting legitimate instructions (nop or similar), but they could potentially use any
other binary value if the control flow has to skip these bytes, such as in the example
in figure 4.1.

4.1.2 Obfuscated code

Some binary codes may have been purposefully altered to hamper their disassembly,
usually for code protection or security purposes. The code is then said to have been
obfuscated; [74] references some known methods for achieving this. Code obfuscation
can also refer to the process of making the assembly code itself more challenging to

48 Chapter 4. Disassembly of binary files

analyse, but we will not cover this here.
A common obfuscation method is the addition of “junk” bytes to the code, repro-

ducing the symptoms of foreign bytes interleaved with executable code. A refinement
of the method consists in choosing those bytes so that disassemblers become desyn-
chronised with the actual code and return the longest possible sequences of incorrect
instructions. Figure 4.2 present an example of how an obfuscated code can mislead
a disassembler into identifying an instruction very different from the actual one.

Figure 4.2: Example of an obfuscated Intel 64 code. If the disassembler misses the
jmp instruction used to skip the junk bytes, it will process them and the following
instruction as a single instruction very different from the actual one.

Other obfuscation methods consist in mixing executable code inside the structure
of the binary file, for instance using reserved and unused bytes in headers to store
instructions, or obfuscating the binary format itself so that sections in the file are
harder to identify while leaving the necessary information for execute it. [80] details
some of those methods. They do not affect the disassembly itself but make the
retrieval of the binary executable code in the file more complex.

4.1.3 Self rewriting code

Another method commonly associated with obfuscation is the use of self rewriting
code, which overwrites itself with binary data corresponding to the encoding of the
actual instructions to execute. A self rewriting code does not prevent disassembly,
but causes the disassembled instructions to differ from those that will be actually
executed, and only a thorough analysis of the disassembled code may allow to iden-
tify the actual instructions. Such an analysis may not even be possible without a
full simulation, for instance in the case of a code modified at each iteration of a
loop. Self rewriting code may also appear in a non obfuscated code to reduce its
size while effectively storing multiple versions in a single file. Figure 4.3 presents an
example of self rewriting code.

4.1.4 Overlapping instructions

Another method that may also be used in non obfuscated codes consists in using
overlapping instructions. This method is especially relevant with instructions sets of
variable length, like Intel x86. If the coding of an instruction overlaps with another,
it is possible to encode the largest in the file and select the instruction to execute
through branches pointing to the relevant part in the coding. The most common
use of this is for instructions using prefixes to distinguish between different opcodes.
Branching the flow after the prefix results in the instruction not using it being
executed. This method is close to self rewriting code in its effects, in that the code
can be successfully disassembled but does not match the code actually executed.

4.2. Disassembling principles and related work 49

Figure 4.3: Example of a simple self rewriting Intel 64 code for a single instruction.

Figure 4.4 presents an example of this technique executing a different instruction in
the first iteration of a loop than for the following iterations.

Figure 4.4: Example of the use of overlapping instructions in Intel 64 code involving
the stos and rep stos whose opcodes differ only by a prefix.

4.1.5 Output format

One last challenge of the disassembler concerns its output format. Since the disas-
sembler is chiefly intended to be used by analysis tools, it is important to ensure that
its output allows to cover most assembly languages and offers standard information
needed by analysis algorithms. Assembly languages present common characteristics:
an instruction is composed of a mnemonic with a variable number of operands, each
operand being either a register, a memory reference, or an immediate value. Since
mnemonics or register names and types vary between architectures, the output rep-
resentation must be able to provide information as to the instruction operations and
impact on the control flow without relying on names.

4.2 Disassembling principles and related work

We will describe here the common principles involved in disassembly and present
some existing disassemblers.

4.2.1 Disassembly methods

There are two main approaches for disassembling a file, linear sweep and recursive
traversal, described in [91] and [73]. Since both methods present complementary
strengths and weaknesses against disassembly challenges, disassemblers aiming at an
extensive coverage of disassembled codes and at overcoming obfuscation techniques
usually implement a combination of the two. Self rewriting code (cf. 4.1.3) is

50 Chapter 4. Disassembly of binary files

not handled by either method, as in this case only an extensive analysis of the
disassembled code allows to correctly identify the code to be actually executed.

4.2.1.1 Linear sweep

Linear sweep disassembly consists in a sequential parsing of the binary code, as-
suming that encoded instructions follow each other without interruption. Figure 4.5
presents an example of the parsing of binary code using this method.

Figure 4.5: Example of a linear sweep disassembly on Intel 64 code.

Linear sweep ensures that all the binary code extracted from the file is parsed,
but is unable to overcome most of the challenges described in Section 4.1.

For instance, foreign bytes interleaved with code will throw a linear disassembler
off course and generate parsing errors or cause it to report erroneous instructions,
as described in figure 4.1. This method is also vulnerable to most obfuscation
techniques, especially those involving the insertion of “junk” bytes.

4.2.1.2 Recursive traversal

Recursive traversal disassembly consists in the parsing of the binary code following
the control flow. A disassembler using this method performs a linear sweep of the
code until a branch instruction is encountered, at which point it attempts to resume
its parsing starting from the instruction addressed by the branch. Figure 4.5 presents
an example of the parsing of binary code using recursive traversal.

This method allows to overcome the problems presented by foreign bytes inter-
leaved with code, but relies upon the successful identification of instructions affecting
the control flow, which implies a more detailed knowledge of the architecture, and of
the targets of those instructions. This is especially challenging in the case of indirect
branches (cf. 2.2.3), whose target is not immediately deducible from reading the
assembly code, requiring an analysis of the preceding instructions to be identified.
This analysis can also become exponentially complex if multiple execution paths
lead to such a branch. Recursive traversal may also be unable to correctly detect

4.2. Disassembling principles and related work 51

Figure 4.6: Example of a recursive traversal disassembly on Intel 64 code.

overlapping instructions (cf. 4.1.4) without specific handling and miss one of the
possible instructions.

This method can also be more slower and complex to implement than a lin-
ear sweep, for instance to handle conditional branches, where the control flow can
reach two different addresses. Some obfuscation techniques specifically target this
weakness by using fake conditional branches, where only one destination is actu-
ally used and the other points to code intended to cause further disassembly errors.
Other such techniques involve modifying the return address of instructions branch-
ing to another subroutine, which are normally expected to return the flow to the
instruction following the branch.

4.2.2 Existing disassemblers

Disassemblers are commonly used either as standalone tools to print the disassem-
bled contents of a file, or as part of a more complex application to retrieve the
assembly code contained in a binary file before further analysis.

Almost every disassembler use a hard coded recognition of the ISA description,
meaning the code of the disassembler itself needs to be updated when adding or
updating an architecture.

4.2.2.1 Disassemblers using linear sweep

Most standard disassemblers use a linear sweep algorithm for performance purposes.
While this is not always described explicitly in their documentation, it can be easily
deduced by observing the disassembly errors returned when attempting to process
interleaved foreign bytes. Such disassemblers usually flag parsing errors and do not
feature any mechanisms for detecting erroneous instructions.

objdump This standalone disassembler [27] is included in most Linux distribu-
tions, handling all architectures supported by this operating system but restricted
to an architecture per build. It allows to disassemble executable, relocatable or

52 Chapter 4. Disassembly of binary files

shared ELF files (cf. 2.3.3.1) or a.out files (cf. 2.3.3.2) and print the assembly code
they contain, using an ELF parser to retrieve executable code and its associated vir-
tual address. Instructions are printed to output as soon as they are disassembled.
objdump also extract labels and prints them alongside the disassembled instruc-
tions at the address with which they are associated. It is also able to retrieve and
print debug information if present.

As a plain linear disassembler, objdump does not feature a mechanism for
detecting data mixed with code and simply flags any parsing errors. It does not
present any easily usable API for using its results in a more advanced context than
printing disassembled code.

XED This disassembler and assembler [44] is developed by Intel for the IA-32/Intel
64 architectures and is available for the Linux, Windows and Mac OS operating
systems. It is able to parse binary files for the ELF, WindowsPE and Mach-O
formats to retrieve executable code and associated virtual addresses as well as labels.
A recent version allows to disassemble files for the Xeon Phi coprocessor architecture
but needs to be executed on a system using this architecture. Unlike objdump,
XED offers an API allowing to pilot the disassembly and access its output.

A drawback of XED is its restriction to the Intel architectures, which is unlikely
to be lifted due to its developing company.

Others standalone disassemblers ndisasm [26], udis86 [96] and distorm [49]
are disassemblers for the IA-32/Intel 64 architectures. They do not include a parser
for the binary format, preventing them from retrieving additional information such
as labels and more importantly the boundaries of the code to disassemble, which
must be provided externally. udis86 and distorm offer to access the disassembled
instructions through an API. distorm is developed with a particular emphasis on
performance, using a prefix tree to look up the possible matches for a binary stream.

Our tests showed (cf. section 4.5.3) that these disassemblers are not always up
to date with regard to the latest evolutions of the architectures, which can prove
problematic when analysing code using instructions from those subsets.

llvm disassembler The LLVM framework [71] contains a disassembler similar
in functionality to objdump. The disassembler is available for the architectures
covered by the framework, which include ARM, IA-32, Intel 64 and PowerPC. The
code of the decoders used by the disassembler, while relying on data present in
tables using a global unified format, is architecture specific.

Debuggers Debuggers usually implement a disassembly feature allowing ad-
vanced users to view the assembly code being executed.

The GNU debugger gdb [54], offers to disassemble any range of addresses from
the executable being debugged. The disassembler may report erroneous instructions
if the given starting address is not located at the beginning of an instruction. It
is also possible to disassemble whole functions provided the file contains debug
information allowing to detect their boundaries.

4.2. Disassembling principles and related work 53

4.2.2.2 Disassemblers using other methods

The following disassemblers use an improved algorithm, usually recursive traversal,
occasionally complemented with linear sweep, in order to extend their coverage. As
such, they may trade present lower performance in terms of speed while aiming at
a better accuracy.

DynInst This static and dynamic binary instrumenting tool [41, 40] allows to
analyse and instrument ELF or XCOFF PE files for the IA-32, Intel 64 and Power
ISA architectures through a C++ API. Disassembly is done following a recursive
traversal algorithm, the API functions allowing to choose if the scope of disassembly
must extend to the whole code or a single function. The results of a disassembly
are presented as a CFG, with the smallest unit being a basic block. It is also
possible to extend the definitions of structures used to represent CFG elements
to add information. A use case is described in [81], which presents methods for
identifying functions entry points through pattern recognition and relies onDyninst
to perform actual disassembly.

PEBIL PMaC’s Efficient Binary Instrumentation Toolkit for Linux [79] is a tool
used to instrument ELF executables compiled for the IA-32/Intel 64 architectures.
Its first task when instrumenting an executable is attempting to disassemble it, flag-
ging functions whose disassembly failed as ineligible for instrumentation. PEBIL
uses the file symbol table to identify its functions, then processes each of them using
a control-driven (recursive) disassembly. If this fails, PEBIL falls back to standard
linear disassembly, flagging the function as incompletely disassembled if this also
fails. A disassembly failure can be due to an unrecognised opcode or to the discov-
ery of a branch instruction pointing either in the middle of an already disassembled
instruction or outside of the current function boundaries while not being a call
instruction. The latter can lead to discard valid functions, as some compilers, like
the Intel compiler icc, may add functions invoking one another using such branches,
which happens especially when compiling files for use with OpenMP. The former
can lead to discard functions where overlapping instructions (cf. 4.1.4) are used.

PLTO This tool [92] allows to instrument and optimise executable files for the
IA-32/Intel 64 architectures without recompilation. PLTO uses a linear sweep
algorithm to disassemble a file. It then correlates the results with a check on the
target addresses of branch instructions. If a branch or relocation is found to point
to the middle of an already disassembled instruction, that instruction is marked
as invalid, and the disassembly is resumed from the target. This behaviour may
cause an instruction to be incorrectly flagged as invalid for codes where overlapping
instructions are used (cf. 4.1.4), or if foreign bytes interleaved with code led to
the erroneous disassembly of a branch instruction. PLTO also attempts to analyse
jump tables to identify the destination of indirect branches.

UBQT University of Queensland Binary Translation [48] is a tool allowing to
convert a binary executable from one architecture to another. The first step of the
translation process is the disassembly of the binary into an internal representation.
The decoding module uses a recursive traversal algorithm, following the destination

54 Chapter 4. Disassembly of binary files

of branch instructions and storing other possible destinations in a queue. The ad-
dresses of indirect branches are recovered with a pattern recognition algorithm to
identify the location of jump tables. An additional algorithm disassembles the parts
in the code that have not been disassembled because they were not reached by any
branch, discarding those areas that are found to contain illegal instructions. The
boundaries of all disassembled areas are also checked against instructions perform-
ing register updates to see if their addresses appear as operands, in order to resolve
simple indirect branches.

IDAPro This is a licensed disassembler and decompiler [16], available for most
available processors and binary formats. Its professional edition is required for
handling 64-bits architectures. IDAPro is available as a standalone application
and through a scripting language allowing to develop modules performing tasks on
disassembled files. An example of the use of IDAPro is presented in [87] as part of a
complete platform able to disassemble and analyse IA-32/Intel 64 executable files.

objconv This object file converter [57] allows to convert library files between bi-
nary formats. It is able to parse binary object files and disassemble the code they
contain, and also print the disassembled code. objconv also perform symbol anal-
ysis on the files, and is able to identify some of the foreign bytes interleaved with
code as such. It supports IA-32/Intel 64 and Xeon Phi coprocessor architectures.

Our tests showed that the impact of the additional analysis performed by
objconv can significantly hamper its disassembly speed (cf Section 4.5.1).

Others disassemblers Ďurfina et al. [100] present a decompiler relying on a dis-
assembler. It uses an architecture description language to represent the instructions
and their binary coding, and allows to include additional information to the disas-
sembled instructions for use by the decompiler. The decompiler is functional for the
Sony PSP console, but does not seem to have been ported over other architectures.

Theiling et al. [97] present a solution for building the CFG of a binary executable
by identifying routines in the code then using a bottom-up algorithm to retrieve the
branch destinations. It uses the TDL language [65] to represent assembly instruction
characteristics, but decoders are hard-coded.

RevGen [45] is a disassembler based on the LLVM [71] framework. It parses
binary code and returns the result using the LLVM internal representation, which
can then be used for further analysis. RevGen is still at an experimental stage and
does not handle whole binary files.

4.3 Performing disassembly

Our solution relies on the principles presented in Chapter 3 to generate and maintain
the architecture specific code used for parsing instructions. A standard parser for the
binary file format is used to extract the binary code to disassemble, the associated
virtual addresses, and the function labels. Debug information is retrieved if present
using the appropriate parser for its format. Each section potentially containing code
is then parsed and a list of structures representing the assembly instructions is built.

Labels retrieved from the binary file are stored in separate structures and linked
to the instructions found at the address to which they are associated. The disas-

4.3. Performing disassembly 55

sembler attempts to identify the instructions targeted by direct branch instructions
and stores them in the representation of the instructions.

Since the disassembler is chiefly intended to be used by other tools for further
analysis or patching, the main concern is ensuring good performance. Therefore,
a linear sweep algorithm has been chosen to perform the disassembly. If a parsing
error is detected, the instruction is flagged as bad and the parsing resumes after skip-
ping the smallest instruction length for the given architecture. However, additional
metrics allowing to detect potential errors are available and additional procedures
can be enabled to handle them.

4.3.1 Disassembly errors

The disassembly process can encounter two types of errors: parsing failure and
erroneous disassembly. A parsing error occurs when the parser is unable to match
the binary data with a valid encoding. This case is easily identified since the parser
returns an error, allowing to flag the bytes as not corresponding to a valid instruction
and skip them. An erroneous disassembly occurs when the parser recognises a valid
instruction that is not actually encoded in the file. This error is much harder to
detect, as everything appears to be normal from the disassembler perspective.

Disassembly errors of both types can be due to an incomplete or erroneous rep-
resentation of the ISA, either because of an error when creating the grammar or
it being incomplete due to an evolution of the architecture. This can cause valid
instructions to fail to be recognised or to be mistakenly disassembled as other in-
structions. These errors can however be mostly prevented by performing the ex-
haustive tests of the parser described in 3.4.5 to detect incoherences in the grammar
representation of the ISA.

The other main cause of disassembly errors is the presence of foreign bytes
interleaved with executable code. As mentioned in 4.1.1, these may not always cause
a parsing error, as they can happen to match valid instructions and be disassembled
as such. In this case, the disassembler may return a list of instructions without
raising any parsing error but that will nonetheless contain erroneous instructions.
This may impact further analyses, especially if one such erroneous instruction is a
branch, which could cause the CFG to be incorrect.

We will describe here some of the checks and methods available to detect and
possibly fix some errors. The possibility remains however that erroneously disas-
sembled instructions remain unnoticed in the final disassembled file.

4.3.1.1 Sanity checks

The disassembly process can perform some preliminary detection of potential erro-
neous disassembly with minimal impact on its overall performance.

One of them is a simplified metric allowing the detection potential areas of in-
terleaved foreign bytes. A counter is increased for each consecutive parser error and
decreased after an instruction is successfully parsed. This enables the detection of
instructions surrounded by disassembly errors, which could therefore correspond to
foreign bytes that matched with the coding of regular instructions. This allows to
establish heuristics for discarding some of these instructions, possibly requesting an-
other pass of the disassembler on a limited number of bytes in order to recover actual
code that was erroneously disassembled because of its proximity to the boundaries
of the foreign bytes.

56 Chapter 4. Disassembly of binary files

Another metric offers information about the flow and can be used for detecting
errors as well as for further flow analyses. When scanning the disassembled instruc-
tions for associating direct branches to the instructions they branch to, unconditional
branches or return from subroutine instructions are detected. All instructions fol-
lowing such branches are then flagged until the destination of a direct branch is
met. This will in effect flag all instructions that can not be reached from a direct
branch and help identify instructions that are potentially disassembly errors, blocks
accessed through an indirect branch, or dead code used for instance for padding.
Establishing this metric also needs to take into account the fact that a direct branch
instruction could be the result of an erroneous disassembly error, potentially lead-
ing instructions to be incorrectly flagged as reachable, since the branch instruction
found addressing them does not actually belong to the code. A correlation with the
results of the previous check is therefore necessary in order to potentially discard
some branch instructions.

4.3.1.2 Handling errors

In addition to checks, actions can be directly taken during disassembly or upon its
completion to fix some errors.

Labels overlapped by disassembled instructions This action relies on the
labels identified as marking the beginning of a function, either from the binary file
or the debug information. If the address associated to such a label is found to be in
the middle of a disassembled instruction, this instruction is considered as erroneous.
It is then flagged as a parsing error and the parsing is resumed from the address of
the label. This allows to handle erroneous disassembly errors during parsing, but
is only effective near the beginning of functions. Padding is however often added
between functions for alignment purposes, so these locations have a higher risk
of disassembly errors. This method could be extended to include direct branches
pointing to the middle of instructions, however those could also be the result of
overlapping instructions as described in 4.1.4. This needs therefore to be correlated
with the confidence in the validity of the branch instruction and the capacity of the
bytes addressed by the branch to be disassembled as a valid instruction. The results
of this correlation can reveal an erroneous disassembly of either the instruction or the
branch, or simply a case of overlapping instructions. The latter case can be handled
by specific flags in the representation of the branch. A similar method consists
in detecting labels identifying variables in the binary file or the debug information
but pointing to a section supposed to be executable code. However, not all binary
formats define such label types and debug information may not be present.

Other methods for detecting or fixing errors are available through further analysis
upon completion of disassembly. Since they impose additional processing, they can
negatively impact performance, imposing a trade-off between speed and precision.

Analysing error ratios One such method involves the overall count of parsing
errors encountered during disassembly. The ratio of errors over the total number of
instructions exceeding a given threshold means either that the file being disassem-
bled uses too many unrecognised instructions, which can be caused by an obsolete
parser or by using the parser for the wrong architecture, or that the section being
disassembled does not actually contain executable code. Different actions can then

4.3. Performing disassembly 57

be triggered depending on the threshold reached, including a critical error for the
highest ratios (above 1%). A more fine-grained approach involves keeping track of
the error ratio over basic blocks or functions, allowing to single out those containing
higher error ratios. Those blocks can therefore be either discarded from the final
disassembly result if they are also found to be unreachable from direct branches or
simply flagged as unreliable, thus complementing the check described in 4.3.1.1.

Detecting suspicious instructions While erroneous disassembly errors are not
directly identifiable, those due to interleaved foreign bytes can be identified through
additional heuristics. These heuristics include the detection of instructions using
operands significantly different from those used by the surrounding instructions,
such as a register unused by any other instruction in the current block or function.
Another such heuristic involves the detection of groups of nearly identical instruc-
tions following each other, as the result of disassembling a series of foreign bytes
with a uniform value can result in such groups. However, a valid code could also
legitimately contain such series of instructions, so their type needs to be taken into
account to identify if this make sense. Pattern matching can be used in this case.

Memory accesses to disassembled addresses Another, more specific, method
involves the detection of instructions not dedicated to control flow but reading from
memory addresses identified as belonging to the range of addresses being disassem-
bled, therefore revealing the presence of data bytes. Further analyses are however
necessary to identify the precise boundaries of the area containing those bytes. In-
structions writing to such addresses can also reveal the use of self-rewriting code.
This method needs to be correlated with the previous checks ascertaining the valid-
ity of instructions to ensure the detected instructions are not themselves resulting
from an erroneous disassembly.

If either of the methods above allows to identify a block of instructions as not
actually containing valid executable code, the disassembler can perform a second
disassembly pass near its boundaries in order to retrieve valid instructions whose
proximity to this block could have prevented to be correctly parsed. Invalid blocks
can be marked as such and removed from the list of disassembled instructions for
all further analyses.

4.3.2 Disassembler output

The output of the disassembler is a list of structures describing the instructions.
These structures contain every information that could be retrieved from their

encoding correlated with additional characteristics encoded in the grammar, as well
as generic information retrieved during the disassembly process. This information
includes the following elements:

• Instruction mnemonic

• Instruction operands, including their type, size and role (read, write)

– For architectures allowing this, the update status of the components of a
memory address operand

• Instruction binary coding

58 Chapter 4. Disassembly of binary files

• Instruction virtual address

• All information present in the grammar and described in 3.3.1.4

These structures also contain optional fields that can be used either to store addi-
tional information which can be loaded during the post parsing phase, or to expand
the description of the instruction. This can be useful to represent instructions from
architectures whose assembly language contains specific information. This is for in-
stance the case for the Xeon Phi coprocessor, where every operand can be applied a
mask register or conversion modifier that have no equivalent in other architectures.

4.4 Madras disassembler

We implemented the principles presented in Section 4.3 into the Madras tool
(Multi-Architecture Disassembler Rewriter and Assembler). Madras allows to
disassemble an ELF binary file and return structures representing the assembly in-
structions and containing every available information from the grammar. It is also
able to identify the destinations of direct branch instructions and retrieve additional
data from the ELF file, such as function labels, and to parse the debug informa-
tion in DWARF format if present to complement the description of instructions, for
instance with their corresponding line numbers in the source code.

Madras relies on Minjag to generate the architecture specific code of the
parser. It is available as a standalone disassembler and fully integrated into the
Maqao framework [39].

Madras is kept up to date with the evolutions of the Intel 64 architecture
and supports all extensions, up to and including AVX2, as defined in the latest
version of the documentation (as of the writing of this dissertation). This is done
easily by updating the instruction list extracted from the Intel documentation that
Minjag uses as a base to generate files. Madras also supports the Intel Xeon
Phi coprocessor architecture. The implementation of disassembly for the ARM
architecture is in the process of being tested as of the writing of this dissertation.

Madras is able to support macro instructions representing multiple instructions
thanks to the shift/reduce states allowed by Minjag in the generated parser.

4.4.1 Inner workings

The disassembler relies on an ELF parser to identify the sections containing binary
code and retrieve the corresponding bytes. It returns structures defined in the base
Maqao framework representing the instructions. Figure 4.7 presents an overview
of the disassembler operating mode.

4.4.1.1 Disassembler initialisation

At the beginning of a disassembly session, the disassembler retrieves the architecture
of the file from the ELF format, then invokes the corresponding binary parser. An
error is raised if the file is not defined for one of the supported architectures.

The labels extracted from the file are ordered by increasing associated address.

4.4. Madras disassembler 59

Figure 4.7: Description of the handling of binary files by the Madras disassembler.

4.4.1.2 Disassembly process

The disassembler invokes the FSA parser (cf. 3.3.3.3) on the bytes of each section
of the ELF file containing executable code. The parser returns each parsed word as
a structure representing the instruction and containing its mnemonic and operands.
The operations performed on a parsed instruction are detailed in algorithm 9.

Algorithm 9 Parsing an instruction
Require: insn: A structure containing information filled by the parser.
1: insn.address ← Parser_GetCurrentAddress()
2: insn.encoding ← Parser_GetCurrentCoding()
3: AssociateLabel(insn)
4: if ∃ label / insn.address < label.address < insn.end_address then
5: insn.end_address ← label.address
6: insn.badly_disassembled ← true
7: Parser_SetCurrentAddress(label.address)
8: end if
9: if Parser_Error() == false then

10: if IsBranch(insn) then
11: AddToTable(branches, insn)
12: end if
13: error_counter ← error_counter −1
14: else
15: error_counter ← error_counter +1

16: insn.badly_disassembled ← true
17: end if
18: if error_counter > 0 then
19: insn.dubious ← true
20: end if
21: AddToList(insn_list, insn)

Each instruction is linked to the eligible label associated to the closest preceding
address. A label is eligible for association if it obeys the following rules:

• It does not begin with a ’.’ character

• It is of type function if more than one label is associated to the same address.

– A label is of type function if identified as such by the ELF parser or in
the debug information if present

60 Chapter 4. Disassembly of binary files

– If the debug information is present, a label not identified as a function
by it is never eligible

If more than one label is eligible for a given address using the rules above, string
comparison is used to break the tie in a deterministic manner.

4.4.1.3 Disassembler completion

When all sections have been disassembled, the instruction list is scanned once more
to identify targets of branches and potentially erroneous instructions. This last pass
is described in algorithm 10.

Algorithm 10 Second pass on disassembled instructions
Require: insn_list: List of disassembled instructions
Require: branches: Table of branch instructions indexed on referenced addresses
1: for each insn in insn_list do
2: unreachable ← false
3: for each branch in branches / branch.addressed == insn.address do
4: branch.destination ← insn
5: end for
6: unreachable ← false
7: if ∃ label / label.address == insn.address then
8: unreachable ← false
9: end if

10: if unreachable == true then
11: insn.unreachable ← true{insn is unreachable by a direct branch}
12: end if
13: if IsUnconditionalBranch(insn) then
14: unreachable← true
15: end if
16: end for

4.4.2 Parallel disassembly

Madras can also use multiple threads to disassemble files. In this mode, the binary
code to disassemble is split, each part processed by a separate thread, and the
resulting instruction lists are merged into a single one after all threads are finished.

The splitting of the file is performed following the identified function labels.
When this is not possible, for instance if the file does not contain labels, the splitting
is done arbitrarily, and the merging may require disassembling a second time the
bytes at the boundaries between two parts to recover valid instructions that were
split between two threads. The self-repairing properties of the Intel architectures
ensure that a minimal number of instructions will have been affected this way. This
is not necessary for architectures with fixed instruction length as it is then possible
to split the code so as to ensure the parts length is a multiple of the instruction size.

The implementation of this mode is currently at an experimental stage.

4.5. Disassembler performance 61

4.4.3 Use in Maqao

Madras is used as an entry point by the performance analysis tool Maqao [23]
to process binary executables. The structures generated by Madras to represent
the instructions in a binary file are used by Maqao to identify functions, loops
and basic blocks, and build its Control Flow and Data Dependency Graphs. This
is based on the resolution of direct branches by Madras and the identification of
subroutine calls as well as the labels retrieved from the ELF file.

In Maqao, the post-parsing actions of the Madras disassembler are used to
fill additional information concerning instructions latencies and dispatches among
processor ports, allowing Maqao to perform static performance analyses at the loop
level. The code quality analysis plug-in for Maqao uses this additional information
to build estimations of the cycles needed for the execution of loops or functions. In
particular, it is able to identify the vectorisation ratio of loops and statically estimate
their execution time in cycles. Madras can also access the debug information in
the file if it is present, allowing Maqao to reference the original code in its results.

Maqao also uses the patching functionalities of Madras, which will be covered
in the next chapter.

4.5 Disassembler performance

The performance of a disassembler can be judged on two criteria, speed and accuracy.
Disassembly speed is calculated from the time necessary to parse a whole file and

return its contents, either as structures or in printed form. While this time obviously
depends on the size of the disassembled file, the relation may vary depending on
the content of the file, especially if the sections containing binary code are not the
largest ones in the file. For instance, the size of a binary file may be due to a
comparatively large data or debug section, neither of which has a significant impact
on the disassembly process. Conversely, an important number of labels in a file,
reflected by a large section containing them, will affect the parsing speed of the
binary file but not its disassembly. In order to keep the focus on the disassembly
itself, the metric used for characterising the disassembly speed will be expressed in
number of disassembled instructions per second.

Accuracy measures the capacity of the disassembler to correctly parse the in-
structions of the architectures it supports, and to successfully disassemble whole
files. The correct parsing of all instructions of an architecture can be tested by
creating test files such as those described in 3.4.5, then attempting to disassemble
them and compare with their source. As noted in 4.3.1, disassembling a compiled
file with 100% completion is not always possible because of interleaved foreign bytes.
We will therefore use the ratio of parsing errors over the total number of instructions
for characterising the disassembler accuracy over regular files.

We compared Madras with other disassemblers among those presented in 4.2.2.
All of those disassemblers use a hard coded implementation of the architecture
specific parsing functions, which allows to optimise the handling of specific cases
and thus to offer better performance than generated code. Since their behaviour and
output vary, we had to adapt the normal operating mode of Madras accordingly in
order to establish a valid comparison. We used for our tests some of the largest SPEC
2001 and 2006 benchmarks [30] as well as some of the exhaustive test files generated
from the instruction list for the Intel 64 and Xeon Phi coprocessor architectures.

62 Chapter 4. Disassembly of binary files

4.5.1 Testing context

We compared Madras with objdump, XED, ndisasm, udis86 and distorm.
Since the Madras disassembler does not perform flow analysis in order to allow

the tools using its output to choose the extent of additional analyses to perform, we
excluded from the comparison the disassemblers for whom flow analysis is tied to
the disassembly process, such as DynInst.

The decoder generated with GDSL was excluded from the tests since it failed for
the files used for this benchmark, either crashing or never stopping. Separate tests
using the test binary provided by GDSL showed that Madras disassembly speed
was 60% higher than the GDSL decoder for this sample file.

objconv was also excluded as it complements its disassembly with analyses
aimed at detecting interleaved foreign bytes, thus offering a better accuracy at the
expense of speed. This additional processing, especially the handling of labels in
the file, significantly slows down objconv for the large files which were used for the
test. While its disassembly speed reached between 150% and 200% of the speed of
Madras for the test files containing no labels nor foreign bytes, it dropped to 70%
for the smallest SPEC files, and to less than 20% for files larger than 1Mb.

The behaviour of the disassemblers is summarised in table 4.1.

Disassembler ELF parsing Structures Printing Architectures
objdump Yes No Yes Intel 64, Xeon Phi
ndisasm No No Yes Intel 64
udis86 No Yes No Intel 64
distorm No Yes No Intel 64
xed Yes No Yes Intel 64, Xeon Phi

Table 4.1: Actions performed by the disassemblers used for comparison with
Madras. ELF Parsing means that the disassembler parses the ELF file to retrieve
the boundaries of code to disassemble. Structures means that the disassembler
builds structures representing instructions. Printing means that the version of the
disassembler used for the test prints the instruction list.

Those among the tested disassemblers offering an accessible API were tweaked
to be closest to the normal operation mode of Madras, which is disassembly with-
out printing of the instructions; this is taken into account in table 4.1. In order
to emulate the different behaviours of the other disassemblers to allow establish-
ing a relevant comparison, the following modes were implemented in the Madras
disassembler:

• Standard : Allocating the structures representing instructions, printing them
then freeing them. This is the standard behaviour of Madras when used as
a simple disassembler.

• Print only : Printing the instructions without allocating the structures rep-
resenting them. This mode is only used for comparison, since it is unsuited
for use by an analysis tool and prevents parallel disassembly.

• Mute : Allocating the structures representing instructions and freeing them.
This is the normal mode of operation for Madras when used as the entry
point of another tool.

4.5. Disassembler performance 63

• Raw : Disabling the parsing of the ELF file to retrieve the boundaries of the
sections of code, which must be fed manually to the disassembler. This mode
is to be combined with one of the three previous ones.

Table 4.2 presents the characteristics of the files used for those tests.

File Architecture File size (Mb) Code size (Mb) Description
Small Intel 64 0,96 0,96 Test file
fma3d Intel 64 3,78 1,75 SPEC2001
calculix Intel 64 5 2,31 SPEC2006
gcc Intel 64 9,02 2,56 SPEC2006
dealII Intel 64 60,94 2,83 SPEC2006
Xalan Intel 64 130,64 3,46 SPEC2006
tonto Intel 64 33,27 5,81 SPEC2006
wrf Intel 64 19,52 6,83 SPEC2006
gamess Intel 64 18,2 10,55 SPEC2006
Large 1 Intel 64 11,95 11,94 Test file
Large 2 Intel 64 23,22 23,22 Test file
equake XeonPhi 0,12 0,05 SPEC2001
art XeonPhi 0,21 0,12 SPEC2001
ammp XeonPhi 0,84 0,44 SPEC2001
swim XeonPhi 0,96 0,57 SPEC2001
wupwise XeonPhi 0,96 0,66 SPEC2001
mgrid XeonPhi 0,95 0,68 SPEC2001
applu XeonPhi 1,03 0,71 SPEC2001
apsi XeonPhi 2,61 1,72 SPEC2001
galgel XeonPhi 2,84 2,08 SPEC2001
fma3d XeonPhi 4,62 2,35 SPEC2001

Table 4.2: Files used to test disassemblers performance. The occasionally significant
differences between file size and code size are due to the presence of labels or debug
information. The files described as test files contain sequences of instructions with
various exhaustive combination of mnemonics and operands and contain no labels
nor debug information.

With the exception of the comparison with XED for Xeon Phi (cf. 4.5.2.2), all
tests were performed on a computer using a Sandy Bridge with 8 processors at 2.6
GHz and 20 Mb cache, running under RedHat. The Linux command time was used
to time the disassembly executions. Each test was performed 30 times, with the
resulting timing calculated from an average of the results.

4.5.2 Disassembly speed

All figures in this section compare disassembly speeds, so higher values are better.
Files are ordered by increasing size of their respective code sections.

4.5.2.1 Comparing Madras operating modes

Figures 4.8 and 4.9 present a comparison of the disassembly speeds of the vari-
ous Madras operating modes on Intel 64 and Xeon Phi coprocessor executables
respectively. As expected, the modes printing instructions are slower due to I/O

64 Chapter 4. Disassembly of binary files

accesses. The results show that allocating and deallocating the representations of
instructions instead of simply printing them slows down Madras by 20% to 30% .
The lowest performance is obtained with large files (more than 100 Mb) containing
an important number of labels, which add a significant overhead to the disassembly
process. This is evidenced by the comparison with the modes where the ELF file is
not parsed, which can be up to 40% faster when dealing with large files (100 Mb).

Figure 4.8: Performances of the Madras disassembler on Intel 64 files, for vari-
ous operating modes. In print only, the instructions are printed directly without
allocating structures, while for mute, the structures are allocated and destroyed but
nothing is printed. Finally, in standard, the structures are allocated, printed and
freed. Raw modes skip the parsing of the ELF file.

Figure 4.9: Performances of the Madras disassembler on Xeon Phi coprocessor files,
for various operating modes. In print only, the instructions are printed directly with-
out allocating structures, while for mute, the structures are allocated and destroyed
but nothing is printed. Finally, in standard, the structures are allocated, printed
and freed. Raw modes skip the parsing of the ELF file.

4.5.2.2 Comparison in print only mode

We compared the Madras disassembler in print only mode with objdump and
XED on the Intel 64 and Xeon Phi coprocessor architectures.

4.5. Disassembler performance 65

The results of the comparison with objdump and XED for Intel 64 files are
presented in figure 4.10. These tests show that the Madras disassembly speed is
comparable to the speed of objdump, reaching between 90% and 110% of its speed.
XED, being maintained by the processor manufacturer, is on average 20% faster
than both of them, reaching its highest performance for files containing no labels,
which could also mean that its ELF parser is more optimised.

Figure 4.10: Performances of the Madras disassembler on Intel 64 files, compared
with objdump and XED. The Madras disassembler directly prints instructions
without allocating structures (print only mode).

The results of the comparison between Madras and objdump for Xeon Phi
coprocessor files are presented in figure 4.11. A different compiled version of
objdump was used for those tests, while the Madras disassembler was the same
executable.These tests show a similar performance as the one observed for Intel 64.

Figure 4.11: Performances of the Madras disassembler on Xeon Phi coprocessor
files, compared with objdump. The Madras disassembler directly prints instruc-
tions without allocating structures (print only mode).

The results of the comparison between Madras and XED for Xeon Phi are
presented in figure 4.12. As XED for Xeon Phi is only available on systems using
this architecture, these tests were performed on such a system, using a version of
the Madras disassembler compiled for it.

66 Chapter 4. Disassembly of binary files

The performance of both tools on this system is different from Intel 64 as the
cores are slower. Another reason is that a linear parser, whose code can not be easily
vectorised, does not take full advantage of the Xeon Phi coprocessor architecture,
especially when executed sequentially.

These tests show a better relative performance for Madras than observed on
Intel 64, with Madras being on average 10% faster than XED.

Figure 4.12: Performances of the Madras disassembler on Xeon Phi coprocessor
files, compared with XED. The Madras disassembler directly prints instructions
without allocating structures (print only mode). Unlike the others, those tests were
performed on a Xeon Phi system, causing a lower speed for both tools.

4.5.2.3 Comparisons in raw mode

Figure 4.13 presents a comparison between the Madras disassembler in raw print
only mode and ndisasm. Figure 4.14 presents a comparison between the Madras
disassembler in raw mute mode and udis86 and distorm. These tests were only
performed for Intel 64 as these disassemblers does not support the Xeon Phi co-
processor architecture. The results presented show that the Madras disassembly
speed is comparable to the speed of other hard-coded disassemblers. Only distorm,
which is optimised for high performance, is significantly faster. However, some of
the files caused it to crash during disassembly. This also occurred with udis86 for
different files.

4.5.2.4 Parallel disassembly

Figures 4.15 and 4.16 present the evolution of the disassembly speed of Madras in
multi-threaded mode for the Intel 64 and Xeon Phi architectures respectively. The
mute mode was used for those tests, as it is the standard behaviour of Madras and
focuses on the stage of the disassembly process which benefits from multi-threading.
The results show that the disassembly process presents acceptable scalability for up
to 4 threads, but with moderate efficiency. As this mode is still in the experimental
stage, this average performance can be due to flaws in its implementation.

Figure 4.17 presents a comparison of the Madras disassembly speed in 4
threaded mode with udis86 and distorm. We observe that the multi-threaded

4.5. Disassembler performance 67

Figure 4.13: Performances of the Madras disassembler on Intel 64 files, compared
with ndisasm. The Madras disassembler directly prints instructions without al-
locating structures and does not parse the ELF file (raw print only mode).

Figure 4.14: Performances of the Madras disassembler on Intel 64 files, compared
with udis86 and distorm. The Madras disassembler allocates structures repre-
senting instructions without printing them and does not parse the ELF file (raw
mute mode). Missing values indicate that the tool crashed for all tests on this file.

mode, even in its experimental stage, allows Madras to overcome its handicap
with udis86. These results justify further works on improving this mode.

4.5.3 Accuracy

The accuracy performance of the disassembler can be evaluated by matching its
result with an assembly reference or by comparing its errors with other disassemblers.

The Madras disassembler is routinely tested for accuracy on the test files con-
taining exhaustive combinations of mnemonics and operands for the supported ar-
chitectures, using their sources as reference. These results show that the ratio of
disassembly errors, including parsing errors and erroneously disassembled instruc-
tions, amounts to 0.099% for the Intel 64 architecture and 0.024% for the Xeon Phi
architecture. Most of the errors are due to dubious cases of homonyms, such as
instructions accepting different register types as operands with the same encoding.

Figure 4.18 presents a comparison of the disassembly errors between Madras

68 Chapter 4. Disassembly of binary files

Figure 4.15: Performances of the Madras disassembler on Intel 64 files, for various
number of threads. For this test, the mute mode was used for Madras.

Figure 4.16: Performances of the Madras disassembler on Xeon Phi coprocessor
files, for various number of threads. For this test, the mute mode was used for
Madras.

Figure 4.17: Performances of the Madras disassembler in 4 threaded mode on Intel
64 files, compared with udis86 and distorm. For this test, the raw mute mode was
used for Madras.

4.6. Conclusion 69

and other disassemblers. The errors detected here are exclusively parsing errors,
as the detection of erroneous disassembly is much harder to perform without a
reference. We had to exclude the test files from this comparison as they contained
instructions from the latest instructions sets that were not supported by the other
disassemblers, especially distorm and ndisasm, leading to comparatively high error
ratios (3 to 17%) on those files.

Figure 4.18: Comparison of error ratios between other disassemblers and Madras
for Intel 64 executables. In this test lower values represent a better accuracy.

objdump, XED and Madras return less disassembly errors than the other
disassemblers. Most of those errors are due to interleaved foreign bytes that could
not be identified as such. objdump comes slightly ahead since it identifies lone
opcode prefixes as such instead of reporting a disassembly error. Such prefixes have
no significance and are ignored by the processor decoder anyway.

4.6 Conclusion

We presented here an application of the binary parser generated from the principles
presented in the previous chapter under the form of a multi architecture disassem-
bler. This disassembler is intended to be used by analysis applications and as such
allows to customise its output to provide additional information about the disassem-
bled instructions. The principles involved also offer means to detect parsing errors
and erroneously disassembled instructions that can occur when processing compiled
executables. The disassembler was implemented as Madras and tests showed its
performance in terms of speed and accuracy to be comparable, if not better, than
those of other disassemblers using a hard-coded representation of the architecture.
Madras currently supports the Intel 64 and Intel Xeon Phi coprocessor architec-
tures, with the ARM architecture being in the testing stages.

In the next chapter, we will present an application of the instruction list returned
by the disassembler as a binary patcher allowing analysis tools to complement their
results with instrumentation.

Chapter 5

Patching executables

Instrumentation consists in the retrieval of information from an application, such
as timing or data profiling, during its execution. It is a crucial step in an analysis
process, as it allows to retrieve data available only at runtime or whose deduction
from a static analysis would require an exceedingly complex process. It presents
however multiple challenges as the overall behaviour of the executable must not be
impacted by the instrumentation.

A common mean to achieve this is through patching of the executable, which con-
sists in its modification without recompilation. Instrumentation is then performed
by patching the file to insert function calls or assembly code snippets allowing to
retrieve the desired information. In addition, patching allows to perform other
operations, such as modifying instructions to observe their impact on the overall
performance of the application.

We will focus here on the patching methods involving a rewriting of the binary
file. This approach allows to reduce the impact of the instrumentation stage in the
analysis process by performing it only once and to impose no other constraint on
the target system than those required for running the original executable. Its main
challenge stems from the fact that, unlike object files, executables are not intended
to be modified and could even contain specific countermeasures against this.

The process of patching a binary file can be broken down into the following steps:

1. Retrieving the code present in the file

2. Alter the assembly code as needed by the patching operation

3. Rebuild the file as a valid executable

Step 1 was covered in chapter 4. In this chapter, we will focus on the challenges
and solutions to steps 2 and 3.

For the remainder of this chapter, the term “patch” will be used for any operation
modifying a binary executable, while “instrumentation” is reserved for the specific
modifications aiming at retrieving information from the executable at runtime, like
data profiling, memory tracing, or timing. Thus, instrumenting a code can be done
by patching it, but not all patching operations aim at instrumentation.

We will first describe the challenges of binary patching in Section 5.1. We will
then present common solutions to those challenges as well as alternatives to binary
rewriting, and some existing implementations in Section 5.2. Our solutions will be
described in Section 5.3 and their implementation in Section 5.4.

5.1 Challenges of patching

The primary requirement of a patching operation is that the behaviour of the
patched file must be identical to the original, except for some specific applications.
For instance the output of the patched executable is expected to be identical to the

72 Chapter 5. Patching executables

original for the same input. Most importantly, the patched program must not crash
when run with its normal parameters.

This means that the control flow and data must be kept intact, or as close
as possible to the original, and that the patching operation must not cause the
appearance of forbidden or undefined operations. Another important requirement
for patching is to avoid inducing important overheads in order to avoid excessive
slowdowns of the patched files.

A prerequisite for correct patching is the successful disassembly of the file, or
at least the parts concerned with patching. Disassembly errors can be pinpointed
using the methods described in 4.3.1, and patch operations impacting code flagged
as erroneous or dubious can be discarded to prevent accidental modification of in-
terleaved foreign bytes. For the remainder of this chapter, we will be assuming that
a patching operation never attempts to modify code containing disassembly errors.

5.1.1 Preservation of the control flow

When running an executable file, the processor uses the instruction pointer to iden-
tify the address of the instruction to execute. The bytes present at this address
are decoded and the length of the decoded instruction is added to the instruction
pointer. If the instruction is a branch instruction, its execution will update the
instruction pointer with the address pointed to by the branch.

Erroneous addresses stored in the instruction pointer will cause the program
execution to fail. If the address is located outside the segment allocated to the
program for execution, this will cause a segmentation fault. If the address does not
contain binary code that can be decoded into a valid instruction, an unknown opcode
exception will be thrown by the processor; this happens for instance if the instruction
pointer references an address halfway into the coding of a valid instruction. In this
last case, if the code pointed to by the pointer happens to be successfully decoded
into an instruction, the processor will execute at least one erroneous instruction,
and may also lose synchronisation with the actual code and eventually encounter
a binary code it is unable to decode. If the instruction pointer contains a valid
address, but the code at this address is not meant to be executed at this point, the
program behaviour will differ from the original, ranging from returning incorrect
results to throwing a segmentation fault, for instance if the code attempts to access
a memory address contained in a register set to a null value.

5.1.1.1 Impact of patching on branches

Patching involves the insertion and possibly deletion of instructions inside the flow of
the executable, thus modifying its total length and the offsets between instructions.
This can also happen when modifying an existing instruction in architectures defin-
ing different instruction lengths, as the modified instruction could be encoded with
a different size. Since branch instructions rely on relative and absolute addresses to
reference their destination in binary code, such changes can impact the referenced
addresses. Figure 5.1 displays an example of branch instructions assigning wrong
values to the instruction pointer because of an inserted instruction.

It is therefore necessary to ensure that branches in a patched file still point
to valid instructions, and that those instructions are coherent with regard to the
original control flow of the program. This concerns direct as well as indirect branches
(cf. Section 2.2.3), and requires the identification of their destination.

5.1. Challenges of patching 73

Figure 5.1: Example of cases (using Intel 64) where the insertion of a single in-
struction causes branch instructions to point to incorrect addresses. The branch at
address 0x08 in the original code will address the inserted instruction in the patched
code, which can cause the code execution to be altered. The branch at address 0x12
in the original code presents a more serious case, as it will address the second byte
of the inserted instruction in the patched code, which may either cause an undefined
opcode exception or the execution of an erroneous instruction.

5.1.1.2 Detection of branch destinations

While the destination of a direct branch can be easily identified statically, it is not
always possible for indirect branches or may require advanced analysis. In particular,
while direct branches have one possible destination, indirect branches are often used
for addressing varying destinations depending on runtime data. It may be therefore
necessary to identify all possible values that the branch operand could take to be
able to update them.

In some cases, the value stored in the operand used by an indirect branch can be
the result of a series of calculations, some of them possibly conditional. Identifying
those values may be complex statically, since the number of possible paths can
increase exponentially when attempting to trace the origin of a value.

Indirect branches can also use a switch table, where the branch operand refer-
ences a cell in an array containing the address to branch to. This array is usually
stored in the data section, and as such its boundaries may not be obvious. For
instance, the cell index could be the result of an extensive computation, making
even the base of the array hard to identify. The array can also be contiguous with
other such arrays, making the analysis of its contents, for instance through pattern
matching, inconclusive for the purpose of identifying its boundaries.

Finally, addresses can appear as immediate values in assembly code. This is the
case for instance when passing a function address as parameter to another function.
It is impossible to distinguish such an address from another immediate without some

74 Chapter 5. Patching executables

heuristics, which need to take into account the fact that numerical values used as
standard immediate operands may happen to match the address of a function in the
executable, thus potentially leading to false detections of such cases.

5.1.2 Preservation of the data context

The execution of a program also depends on its runtime data environment: values
stored in registers, on the stack, or in other memory locations. Code added to a
file through a patching operation is liable to change this environment. Since this
code may not be known during the patching operation, for instance if located in a
dynamic library, it is not possible to predict which elements of the environment it
will impact.

5.1.2.1 Saving register values

The conventions of the Architecture Binary Interface (ABI) specify which registers,
also called scratch registers, must be saved before invoking a function. These regis-
ters can therefore be overwritten by a function without saving them beforehand, as
the invoking function is expected to have done this if it was using them. However,
when patching a code, a function call may be inserted anywhere, making the addi-
tional insertion of instructions for saving and restoring these registers necessary. In
some cases, the process of invoking an external function itself may also overwrite
some registers. Finally, it has been observed for executables built from a single file
that the compiler may not have obeyed the ABI conventions when invoking internal
functions for optimisation purposes.

Architectures also define specific registers storing flags containing the results of
comparisons, which are used by conditional instructions. These flags may be mod-
ified by the inserted code, which could change the behaviour of further conditional
instructions in the original code.

The patching operation must therefore include the insertion of instructions al-
lowing to save and restore the contents of registers. This may however lead to
significant overheads.

5.1.2.2 Saving the stack

The stack is an area of memory used for storing local data and passing parameters
to invoked functions, depending on the architecture and the level of compilation
optimisation. Its top level is usually identified by the stack pointer, but the code
of a function may actually access any position inside the stack regardless of the
address identified by the stack pointer. A detailed analysis of the code is necessary
to identify the parts of the stack that are used, as the code added by a patching
operation may access the stack and possibly overwrite values present on it.

For instance, depending on the ABI, an inserted function call may modify the
stack, first when saving the calling context, then when passing parameters to the
function, and finally by the called function itself. If the patched code was using data
stored on the stack, the inserted code may overwrite it.

The stack must therefore be preserved before the inserted code is executed, either
by saving its value or moving the stack pointer. [75] references the problems linked
with the saving of the stack.

5.2. Methods and tools for instrumentation 75

Some architectures may also assume that the stack pointer is aligned at the
beginning of a function. If a function call is inserted in the middle of a function, the
stack pointer may need to be realigned at this point to ensure the invoked function
works properly.

5.1.2.3 Preserving variables references

The behaviour of the executable also depends on its variables, some of which are
present in the executable and directly accessed by assembly instructions. These
accesses may reference the offset from the current instruction or use a fixed value.
In the latter case, extended analysis may be needed to identify those values as such.
For instance, let us consider the following C instruction printing a string:

puts("Hello sweetie!");

It may be compiled into the following Intel 64 assembly instructions:

mov $0x57484f,%edi
call <puts>

In the resulting assembly code, 0x57484f is the address of the string to print in the
data section of the executable and edi a register used for passing parameters to
functions. Detecting that this immediate value is actually the address of a variable
used by the puts function is not straightforward, even more so if the invoked function
is defined in an external library unavailable for analysis at the time of patching.

The patching operation may therefore impact these addresses as well, if they
caused the offset between the instruction and the accessed data or even the address of
the data in the file to change. Detecting those references present the same problems
as those described for the branch instructions in 5.1.1.2.

5.1.3 Handling dependencies of inserted code

For easier implementation, instrumentation or profiling is usually done by inserting
calls to ad hoc functions that have been already developed and compiled separately,
the alternative being the insertion of the corresponding assembly code, which could
be complex depending on the instrumenting function.

If the format of the patched binary file allows it, those functions can be ref-
erenced in a shared library, and the patcher must insert the required instructions
and references for invoking such a function. This usually implies the edition of
the relevant relocation table stored in the binary file, and adding the appropriate
architecture specific snippet of code.

In other cases, it may be necessary to add the whole body of the function to
the file. This can occur for instance if the patched executable is supposed to be
standalone and not requiring any external libraries. In that case, the patcher needs
to ensure that all required functions are added to the file, including those needed
by the inserted function and its dependencies.

5.2 Methods and tools for instrumentation

We will first present here alternative solutions for instrumenting files with their pros
and cons as well as methods commonly used in binary rewriting, then describe other
tools allowing to patch or instrument files.

76 Chapter 5. Patching executables

5.2.1 Compiler-based instrumentation

One alternative method for instrumentation uses the compiler. The code modifica-
tions are performed during the compilation process, so that the compiled executable
contains all required alterations. This allows to benefit from the compiler internal
representation of the code to ensure that the modifications will not damage the
control flow of the generated executable, while preventing the transformations per-
formed by the compiler on the code to be impacted by the modifications, which is
the main drawback from source instrumentation.

This method is used by the GNU profiler gprof [63, 15, 99] to add probes during
processing by the gcc compiler. Another use of this is described in [101], where
executables for the MIPS processor are instrumented using additional information
provided by the linker to create relocation tables allowing to update all branches
inside the code, while branches to data section are not updated as the inserted code
is added in a gap in addresses between the code and data section.

The main drawback of this method is that it implies being able to modify the
code of the compiler used, which may not be possible if the compiler used in the
files to be analysed is neither open source nor allows the addition of plug-ins. It can
also lead to an increased implementation workload if multiple compilers must be
supported, as each of them would have to be patched accordingly. It also requires
access to the application sources in order to recompile it with the appropriate op-
tions, which is not always possible. Finally, while such methods allows to relatively
easily instrument files on a function or loop level, it may be more complicated to
specify fine grained modifications, such as at an instruction level.

A similar method would consist in analysing the file in order to rebuild the
intermediary representation used by the compiler from the binary code, then modify
it to apply the needed patching operation and reassemble it. However, decompilation
is a complex problem that may not always have a reliable solution, and, since the
purpose of patching is usually to retrieve information about the behaviour of the
compiled file, this intrusive mode of patching could extensively change the structure
of the generated code, like source patching would, and invalidate the results.

5.2.2 Dynamic patching

Dynamic patching consists in the modification of a file during its execution, either
by using a supervising thread or by altering the executable after it has been loaded
into memory.

5.2.2.1 Thread supervision

The use of a supervising thread, such as the one allowed under Linux by the system
call ptrace [66], allows to control the execution of another thread and change its
runtime data context. Debuggers are a common application of this method. It can
be used in order to perform instrumentation in a file while avoiding problems tied
to the preservation of the control flow and the data environment, since all runtime
variables can be accessed.

One drawback of this method is that the process of patching the file will have to
be repeated for every execution of the application, adding its overhead to all of them.
It also requires an additional thread to be executed, which may not be possible or
require additional configuration from the environment, for instance in the case of

5.2. Methods and tools for instrumentation 77

an already multi-threaded code. Another drawback is that the whole code may not
be accessible through this method, preventing some of the more detailed analyses
of the executable to take place before settling on the patching operations to per-
form. Finally, while well adapted for retrieving information during execution of the
program, this method may not be adapted for more intrusive patching operations,
such as modification or deletion of instructions.

A further example of this technique is demonstrated by Periscope [62], which
performs a distributed thread supervision of multi process programs.

5.2.2.2 Patching in memory

Patching the representation of the file in memory allows to access the code after it
has been loaded and all operations such as relocations have been performed. It also
allows to perform multiple patching operations during the execution of the file, such
as removing a given modification in a loop after a certain number of iterations.

It suffers the same drawbacks as the thread supervision method in that the over-
head of the patching process is added to each execution of the file, while presenting
the same challenges as static patching regarding the preservation of control flow.

5.2.3 Simulation

Another method consists in simulating the execution of the application or dynami-
cally translating it in a process similar to Just In Time compilation while performing
the required modifications. The main interest of this method is that, since the whole
executable is reinterpreted, it allows to avoid all problems tied to the conservation
of the control flow or data environment, as modifications brought by the patch op-
erations are integrated in the execution as if they had been present at compilation
without altering the overall structure of the program.

This is done however at the cost of an important overhead, since the translation
process can be time consuming. It can also present issues when handling multi-
threaded applications, as it requires being able to emulate multiple threads and
their communications, which are handled at the system level. It also requires an
extensive knowledge of the behaviour of the ISA, which may not be easily available.

5.2.4 Code displacement

One of the most widespread methods for addressing the problems tied to the preser-
vation of the control flow when patching a program is code displacement, also called
code relocation. It consists in branching the control flow to an added area of code.
Some instructions in the original code are modified to be replaced with a branch
instruction addressing this new area, which contains the replaced code and any mod-
ification requested by the patching operation. The flow is then branched back to the
original code. An implementation of this method as the qp and qpt instrumenters
for the MIPS and SPARC processors is described in [69].

A drawback of this method is that the inserted branch to the displaced code
may be larger than the code to be displaced. This can occur in architectures with
instructions of variable size or if the branch operation requires more instructions
than those composing the displaced code.

An alternative is the use of system interrupts instead of branches to jump to
the displaced code. This presents the advantage that the interrupt operation takes

78 Chapter 5. Patching executables

care of saving the context and transferring the control to the area of relocated code.
In the case of Intel x86, it presents the additional interest of being accomplished
with a 1-byte instruction, the shortest length, thus ensuring minimal alteration of
the original code to insert it, since other branches are always longer. The main
drawback of this alternative is the important overhead brought by the interrupt
operation for saving the context and transferring the control.

Code displacement can be used either in binary rewriting or dynamic patching.

5.2.5 Patching tools

We will present here some existing patching or instrumenting tools and how they
address the challenges of binary rewriting.

We will also present tools using binary rewriting for code optimisation or binary
translation instead of instrumentation. While those tools have to address similar
issues to those met by instrumenting tools, they do not necessarily have to obey the
same constraints with regard to preservation of the original code flow, as they aim
at actively modifying it.

5.2.5.1 DynInst

DynInst [41, 40] is a static and dynamic binary instrumenting tool allowing to patch
ELF or WindowsPE files for the IA-32/Intel 64 and Power ISA architectures. It
allows to insert function calls at different points of the executable CFG.

Instrumentation is done through code displacement using a double trampoline.
The original code is modified to replace one instruction with a branch to an in-
serted area of memory containing the replaced instruction, and a branch to a mini-
trampoline. The mini-trampoline is another inserted area of code containing instruc-
tions for saving and restoring the context, passing arguments to the inserted function
and invoking it. This behaviour is used for static as well as dynamic patching.

A drawback of this double trampoline approach is the overhead it causes due to
the consecutive branch instructions.

5.2.5.2 PEBIL

PEBIL [79] is a binary rewriting tool allowing to patch ELF files for the Intel
64 architecture. PEBIL allows to insert function calls and assembly snippets in
binaries for instrumentation purposes. PEBIL addresses the problems of patching
by performing code relocation at a function level. New code and data segments
are created to contain the added and modified code. When the assembly code in a
function needs to be patched, the whole function is moved to the new code segment
and its code is altered as needed by the patching operation.

PEBIL also adds code around insertions for saving the registers and moving
the stack to save the context. Functions that could not be properly disassembled
are flagged as being ineligible for instrumentation, as well as functions too small to
contain a branch instruction. This last case can however happen in Intel 64.

5.2.5.3 PIN

PIN [67] is a tool developed by Intel performing runtime instrumentation through
thread supervision, allowing to trace an executable during its execution and monitor
various parameters. It is available for Linux, Windows and Mac OS executables on

5.2. Methods and tools for instrumentation 79

the IA-32 and Intel 64 architectures. Support for the Xeon Phi coprocessor archi-
tecture was recently added for Linux as well as for the IA-32/Intel 64 architectures
under Android.

The tool also allows to insert calls to functions during the execution of the code,
as well as modify the contents of memory during execution. The thread supervision
mode induces slowdown for the instrumented files. It is also possible to insert probes
in the code before execution, which redirect the execution flow to another function
in a process similar to code displacement. A file so instrumented with PIN can
be run under GDB. This mode does not work on multi-threaded applications and
does not check if the destinations of branch instructions is valid, which can lead the
patched file to crash.

5.2.5.4 Valgrind

Valgrind [82, 83] is an instrumentation platform for Linux executables under IA-32,
Intel 64, ARM, Power ISA and MIPS architectures. It is a framework for building
tools using its instrumenting abilities.

The core of Valgrind functions as a JIT compiler. It begins by disassembling
the executable code and converting it into an intermediate RISC-like assembly lan-
guage. Instrumentation is done on this intermediate representation, which is then
recompiled into the assembly language of the target architecture and executed. The
contents of the registers used by the architecture are stored in memory.

System calls are handled by setting up the system state as if the original code
was still executing. Threads are handled by Valgrind, which executes them on a
single thread that periodically switches between the simulated threads.

A drawback of the simulation method is its significant overhead, a program
simulated with Valgrind without executing any additional instrumentation being 20
times slower than the original.

5.2.5.5 SecondWrite

SecondWrite is a binary rewriting tool [38] based on the LLVM framework [71].
It is intended to perform specific optimisation and security improvements [37] to
binaries. The binary code is disassembled into the LLVM internal representation,
which is then used to perform additional analysis on the code in order to deduce
information not present in binary code, such as local variables and stack frames. The
internal representation is then used to perform additional optimisations. The LLVM
back end is then used to write the modified binary as for a standard compilation.

This method ensures an optimal flexibility in the handling of the disassembled
code and ensures the correctness of the rewritten code. However, its efficiency to
deal with instrumentation is more questionable, as the modifications required may
cause the structure of the instrumented code to differ from the original, leading to
problems similar to those arising when instrumenting the source code.

SecondWrite is a licensed project that seems to have only recently evolved
beyond the prototype stage.

5.2.5.6 Diablo

The DIABLO framework [42, 51] allows to perform binary rewriting during the
linking stage of compilation. It is available for the ARM, i386 and Power ISA

80 Chapter 5. Patching executables

architectures and operates only on statically compiled files.
Since dynamically compiled files are widespread in most Unix and Linux based

operating systems, to the point of being the default mode for the gcc and Intel icc
compilers, this restriction is an important drawback. The insertion during compi-
lation also suffers from the same limitation as the methods relying on the compiler
as they require it and the compilation process to be accessible.

The project does not seem to have known significant activity for the last 4 years.

5.2.5.7 REINS

REINS [103] is an IDAPro [16] based binary rewriter aiming at increasing security
of untrusted executables. The rewriter diverts branches to a verifier which checks
their safety before authorising them. Due to mechanisms ensuring the continuity of
the flow in the rewritten executables, their size can be doubled.

REINS is currently available for IA-32 executables for Windows and seems to
be still at a prototype stage.

5.2.5.8 Binary Translation tools

These tools aim at converting an executable from an architecture to another, al-
lowing to emulate a different instruction set than the one on which the file is being
executed. Because the translation may occur between very different instruction sets,
this specific type of patching usually causes important changes between the original
and its modified versions. However, the code may be closer when translating be-
tween instructions sets defined for the same family architecture, such as IA-32 and
Intel 64, or different subsets of the Intel 64 or ARM architecture.

StarDBT [102] is a binary translation tool from IA-32 to Intel 64, performing
the translation at runtime. Since both instruction sets are close, with only some
instructions in IA-32 being absent in Intel 64 or under a different form, the translator
can preserve part of the original code, switching to the translated version when such
an instruction is encountered or when an optimisation is possible. The translator
maintains a lookup table referencing the addresses at which the flow must branch
to the translated code, which can cause a significant overhead.

[46] presents a dynamic instrumentation method based on the PIN [67] tool,
intended to be used for securing x86 executables by running them in a protected
area. The method is based on transactional memory to handle binary translation
over multi-threaded code and prevent race condition on metadata accesses.

5.2.5.9 Other tools

The following tools have undergone little to no activity in the recent years and may
be abandoned.

The Elfsh utility and libraries, later merged with ERESI [53] (Reverse En-
gineering Software Interface), allow to disassemble, perform dynamic and static
analysis, and patch ELF executables. It is available for IA-32, Intel 64 and SPARC
architectures. Binary rewriting is done by inserting relocatable files into executa-
bles, and redirecting function calls to point to the inserted functions. The project
seems to have received few contributions in the last years.

Etch [89] is a binary rewriting tool for Windows IA-32 executables. It allows
to add, modify or remove parts of the code of an executable in order to perform

5.3. Binary rewriting using code displacement 81

instrumentation or optimisation. Etch was released in 1997 and has undergone few
evolutions since.

PLTO [92] performs binary rewriting, and include optimisation as well as instru-
mentation options. It operates during link time and therefore suffers from the same
drawbacks as the tools tied to the compiler as they are dependent on its accessibility.
It is used for IA-32 and does not seem to have been updated since 2001.

5.3 Binary rewriting using code displacement

Our solution to address the challenges tied to binary rewriting relies on code dis-
placement, as described in 5.2.4. It is used for all modifications that would change
the size of the code, such as insertion or deletion of instructions, and modification
of instructions into versions with a different encoding size for architectures with
variable instruction length.

The main constraint of the code displacement method is being able to correctly
detect and update all branches or memory references to and from the displaced code.
Since those are not always easily identifiable, our solution involves reducing the size
of the displaced code whenever possible. This could be achieved by moving only a
single instruction, and returning the flow to the instruction immediately following
it; however in architectures with variable instruction length, a branch instruction
could be larger than the instruction to be patched, making this simple replacement
not possible. In some cases, performing a branch may also require the insertion of
more than one instruction. The solution was therefore to allow varying scopes of
displaced codes depending on the patched location.

We will first detail here our implementation of code displacement, then the
various workarounds allowing to address the remaining problems, and the current
limitations. We will also address the issues tied to the saving of context.

5.3.1 Conventions

In most cases, a single patching modification will target a single address: it will
either consist in the insertion of a function call or code snippet, or the modification
or deletion of the instruction at this address. The only exception would be the
deletion or replacement of a series of consecutive instructions, but this can also be
considered as a modification targeting the address of the first instruction in the
series. In the remainder of this chapter, we will use the term patched address to
identify such an address. Since the patcher always targets the code, we will use
interchangeably the term patched instruction to identify the instruction located at
the patched address.

5.3.2 Code displacement

When displacing code larger than the branch instruction to insert, padding needs to
be added to ensure that the instructions following the displaced area remain at their
original address and that the overall size of the code does not change. This padding
is composed of nop instructions. Although the original location of the code should
not be accessed when the patched file is executed, this ensures that no undefined
operations will be performed if it is still somehow accessed, which could happen if
an indirect branch pointing to this part of the code was not detected. The original

82 Chapter 5. Patching executables

code is not left in place, as at least one instruction has to be replaced in order to add
the branch instruction, which could cause an instruction to be split in architectures
defining instructions of different sizes.

All displaced codes are appended to one another and grouped into a new section,
which is added to the patched file. Any relative references to another part of the
executable code or data are updated in the displaced codes to reflect the change
of addresses. The virtual address affected to the new section must be outside of
the original range of virtual addresses of the file. The displaced code being in a
new area, any modifications can then be performed on it without any impact on
the remaining of the code. The detailed implementation of code displacement is
described in algorithm 11 and illustrated in figure 5.2.

Algorithm 11 Code displacement.
Require: insns: List of instructions to patch
Require: displaced_insns: Contiguous block of instructions to displace
Require: patch: Patching operations to perform
1: branch ← NewBranchInsn()
2: new_insns ← NewInsnList()
3: AppendToList(new_insns, branch)
4: while new_insns.size < displaced_insns.size do
5: padding_insn ← NewNopInsn()
6: AppendToList(new_insns, padding_insn)
7: end while
8: next_insn ← NextInsn(displaced_insns)
9: ReplaceCode(original_code, displaced_insns, new_insns)

10: PatchCode(displaced_insns, patch)
11: SetBranchTarget(new_branch, FirstInList(displaced_insns))
12: return_insn ← NewBranchInsn()
13: SetBranchTarget(return_insn, next_insn)
14: AppendToList(displaced_insns, return_insn)

Figure 5.2: Patching a file using code displacement

5.3. Binary rewriting using code displacement 83

The crucial step is the identification of the displaced code, which should be the
narrowest possible to avoid moving the destination or origin of a branch instruction
that was not detected, while being large enough to contain a branch instruction.

We devised three different scopes for identifying the code to displace, each of
them leading to a potentially larger area of displaced code than the previous one.
This allows to switch to the next scope if the current does not provide the necessary
size. We also devised an alternative using trampolines if the scopes must not be
changed or if none of them allow to achieve the required length.

5.3.2.1 Displacing single instructions

This scope offers optimal safety in the preservation of the control flow, as moving
only the patched instruction ensures that all branches addressing it, even those
that could not be detected, will address the inserted branch instruction instead.
However it is not always possible if the patched instruction is smaller than the
branch instruction to insert.

A workaround for this case consists in attempting to add instructions immedi-
ately following or preceding the patched instruction to the displaced code until either
the length of a branch instruction is reached or a branch instruction or destination
of another branch instruction is met. This fall-back allows to preserve a minimal
number of displaced instructions without having to switch to a larger scope.

5.3.2.2 Displacing basic blocks

In this mode, the basic block containing the patched instruction is displaced. For
the purpose of this operation, a basic block is identified as follows:

• It begins either:

– at the first instruction preceding the patched instruction and addressed
by a branch

– after the first branch instruction preceding the patched instruction

• It ends either:

– before the first instruction following the patched instruction and ad-
dressed by a branch

– at the first branch instruction following the patched instruction

– at the patched instruction if it is a branch instruction itself

• If the patched instruction is a branch, the block also includes all nop instruc-
tions following it

This scope offers a good compromise between limiting the size of displaced code
and ensuring that it is large enough to contain a branch instruction. Another ad-
vantage of this scope is that it reduces the number of added branches if multiple
patched instruction belong to same basic block, as it will be moved only once.

It is however possible to encounter basic blocks with the definition above that
will be smaller than the shortest branch instruction. For instance, in the IA-32/Intel
64 architectures fnord, the instruction returning from a subroutine, ret, is coded on
1 byte, while the shortest branch instruction uses 2 bytes. Compilers can generate

84 Chapter 5. Patching executables

code where a branch instruction points to a ret instruction immediately followed
by non nop instructions, making it a 1 byte basic block.

The other drawback of this method is its reliance on the correct detection of
branch instructions destinations, especially for indirect branches.

5.3.2.3 Displacing functions

The last scope moves whole functions. Functions are identified in a simplistic man-
ner as the instructions contained between the first label immediately preceding the
patched address up to but not including the label immediately following it.

The main advantage of this scope is that it ensures that the displaced code will
have the required size in most cases, although it is still possible for a very simple
function to be still smaller than a branch instruction.

It presents the drawback of increasing the size of displaced code, and thus the
chances that some of the displaced instructions are targets of indirect branches which
could not be identified and will not be updated, thus potentially leading to break
the control flow.

5.3.2.4 Trampolines

Another method for handling displaced codes smaller than the standard branch
instruction can be used if the architecture offers shortest branch instructions with a
reduced range of accessible addresses. This is the case in Intel 64, where a 2-bytes
branch instruction is defined (cf. 2.2.4.1), allowing to address instructions distant
from at most 128 bytes.

If the displaced code is large enough to contain a shorter branch, a trampoline
may be used. For this operation, the patcher attempts to find an area of code
meeting the following criteria:

• It is eligible for being displaced given the current scope.

• It can be reached from the patched address with a shorter branch instruction.

• It is at least as large as two largest branch instructions.

This area can also be one to be displaced for another patching operation if it is large
enough to contain an additional standard branch instruction.

If such an area is found, it is displaced as if it contained a patched instruction.
Instead of padding, a large branch instruction, the trampoline branch, is inserted at
its original location. The area containing the patched instruction is moved normally
to the section containing displaced code and appended with a branch instruction
addressing the instruction immediately following it as is the normal behaviour. The
trampoline branch is set to address this displaced area. Finally, the area containing
the patched instruction is replaced by a shorter branch instruction addressing the
trampoline branch. The principle is illustrated in figure 5.3.

While it would be possible to link trampolines until an area suitable to contain
a large branch instruction is found, this behaviour could lead to a “domino effect”
causing large areas of code to be displaced and increasing the risk of displacing an
indirect branch instruction causing a break in the control flow.

5.4. The Madras patcher 85

Figure 5.3: Illustration of the principle of using trampolines to displace code

5.3.3 Preserving the data environment

If the patching operation consists in the insertion of a function call, the inserted
instructions performing it are surrounded by instructions for saving the data context
before the invocation and restoring it afterwards. The instructions for saving the
context perform the following operations:

1. Move the stack pointer to an alternate address and save its original value to
the new stack. This address is chosen so as not to overlap with the existing
stack. Alternate modes allow to use an area predefined when patching the file.

2. Save all registers, including those containing flags, to the new stack.

3. Align the new stack as specified by the ABI when beginning an executable.
The address of the stack prior to its alignment is also saved to the aligned
stack so as to allow its retrieval.

The instructions used to restore the context perform the reverse operations:

1. Reload the stack pointer with its value before alignment.

2. Restore all registers and flag registers from the stack.

3. Move the address of the original stack to the stack pointer.

This method ensures that the data environment will not be altered by the in-
serted function. Its main drawback is the overhead induced by all the load and
store operations required to save the registers, which can be important if the archi-
tecture uses a large number of them, and have a significant impact on the overall
performance of the patched file if the inserted function occurs in a loop with a high
number of iterations. For these reasons, it is important to allow the number of saved
registers to be tweaked in order to allow higher level analyses to identify those used
in the patched function and restrict the saving operations to them.

5.4 The Madras patcher

We implemented the principles described in 5.3 into the Madras tool. The patcher
functionality of Madras uses the instruction list returned by its disassembler func-

86 Chapter 5. Patching executables

tionality as a base for its operations. It relies on an ELF editor to generate the
patched file, which is the same editor used for parsing files during disassembly. The
Madras patcher also uses the assembler whose architecture specific code is gener-
ated by Minjag (cf. 3.4.3) to generate binary codings when needed.

Our main concern when implementing the patcher functionality was to offer
a low level tool allowing an extended range of operations at the instruction level
while keeping its use relatively simple. Another concern was reducing the amount
of analysis required by the patching process so as not to increase its impact on the
analysis chain, while its fine-grained approach allows to use the result of any higher
level analyses to improve the safety of the operation performed with regard to the
preservation of the control flow and data environment.

The Madras patcher is functional and currently supports the Intel 64 and Xeon
Phi architectures, for the binary files using the ELF format. It is accessible through
a low-level API described in Annex B.

5.4.1 Main features

The patcher offers to perform the following operations:

• Code modification

– Insertion of function calls

– Insertion of assembly code

– Replacing a group of instructions by another

– Deletion of instructions

• Data modification

– Insertion of global variables

• Libraries modification

– Renaming dynamic libraries

– Adding new dynamic libraries

– Adding new static libraries

• Label modification

– Adding new labels

All code modifications cause the area of code where it must take place to be
displaced as explained in 5.3.2.

5.4.1.1 Inserting assembly code

The inserted instructions are added into the displaced area at the patched address.
If the inserted code has to be executed before the patched instruction, it is inserted
before it. In that case, an extra step consists in updating all branch instructions
addressing the patched instruction to point at the branch addressing the displaced
code instead, so as to ensure that the inserted code is always executed first regardless
of the path accessing it.

5.4. The Madras patcher 87

5.4.1.2 Inserting a function call

The patcher allows to insert a call to a function either already present in the ex-
ecutable or defined in a dynamic or static library. The assembly instructions for
the function call are inserted into the displaced block at the appropriate location,
surrounded by instructions needed to preserve the context (cf. 5.3.3).

If the function is defined in a dynamic library, a new block of code containing the
architecture-specific instructions for the stub used to invoke an external function is
added with the appropriate instructions in a separate list of inserted instructions.
The inserted call is set to address this stub as is the normal behaviour for external
functions. If the function is defined in a static library, the code of the function is
inserted into the patched file, with the inserted branch addressing the entry point
of the function. In both cases, relocations are handled by the ELF editor.

A function call insertion is otherwise handled as an insertion of assembly code,
with the instructions for invoking the function and preserving the context considered
as the inserted code.

5.4.1.3 Replacing or deleting a group of instructions

Replacing a group of instructions can serve two purposes:

• Modifying an instruction, which amounts to replace it by another instruction.

• Disabling instructions by replacing them with nop instructions.

This modification is the only code modification that may not cause the area where
it takes place to be displaced, as it does not change the size of code. In that case,
the modification directly takes place in the original code. The exception is the
replacement of an instruction with another coded on a larger length.

Instructions can also be deleted and are then removed from the displaced block.

5.4.1.4 Insertion of global variables

The contents of inserted global variables are copied to a new data section added to
the patched file. Those variables can be referenced by inserted codes.

5.4.1.5 Conditional executions

The Madras patcher also offers to set conditions on the execution of an inserted
function or assembly code. These conditions are compiled into assembly instruc-
tions that are added to the inserted code and ensure it will be executed only if the
conditions are met. This allows for instance to execute an inserted code only for
some iterations of a loop, or for more complex uses insert different codes to execute
depending on the possible values of an operand used by an indirect branch.

5.4.2 Customisable behaviour

In order to ensure the low granularity of the Madras patcher, most of its behaviour
can be controlled through toggles either for a whole patching session or for separate
patching operations while offering default modes for the general cases.

88 Chapter 5. Patching executables

Scope selection It is possible to choose which kind of scope to use when iden-
tifying areas of code to displace, and whether the patcher can switch to a broader
scope if the current one could not find an appropriate area. The use of trampolines
can also be disabled. By default, instructions are displaced at the block level and
trampolines are used whenever needed.

Branches updating The Madras patcher allows to selectively update the
branches to patched instructions when inserting code that must be executed be-
fore it. It is possible to request for only some branches to be updated while leaving
the others addressing the original patched instruction. This can be useful for in-
stance if the inserted code aims at profiling the entry point of a loop or function,
and should not be executed when accessed from inside.

Saving the context The instructions for preserving the context when inserting
a function call impact all registers of the architecture by default. It is possible to
change the registers concerned or remove the whole preservation of the context,
allowing the application using Madras to fine tune the registers to save based on
the knowledge of the inserted functions, thus reducing the overhead induced by the
patched code.

5.4.3 Inner workings

We will briefly describe here the internal mechanisms involved in the processing of
a file by the Madras patcher.

5.4.3.1 Interface with architecture specific code

The patcher handles multiple architectures through the use of a set of architecture
specific functions which must be defined for each supported architecture. The prin-
cipal operations performed by those functions involve the generation of architecture
specific instructions lists, including the following:

• Instructions allowing to invoke a function, including passing its parameters
and retrieving its return value.

• Instructions allowing to enforce a set of conditions.

• Branch instructions, including shorter versions of branches if they exist for
this architecture.

• nop instructions.

• Stubs for invoking a dynamic function.

The use of such functions allow the main code of the patcher to remain agnostic
with regard to the architecture and reduce the implementation needed when porting
the patcher to a new architecture, in keeping with the main concerns involved in
the design of Madras.

5.4. The Madras patcher 89

5.4.3.2 Finalising a patching session

The patcher performs all of the requested modifications at once, then finalises the
patching session and generates the patched file.

During finalisation, the patcher ensures that all modified and inserted instruc-
tions are properly encoded, which includes the update of branch instructions and
of instructions referencing data sections in the file. Dependencies of inserted static
libraries are checked in order to ensure that they have also been inserted. The
patcher also checks the presence of unconditional branches addressing other such
branches, which can happen if a branch and the instruction it addresses have both
been displaced, inducing unnecessary rebounds. Those rebounds are replaced by
a single branch instruction in order to avoid inducing an overhead by performing
unnecessary branches.

5.4.4 Limitations

The current version of the Madras patcher assumes that the added section con-
taining displaced code is reachable from the original code with a direct branch
instruction. In Intel 64, such instructions encode their offsets on 32 bits, allowing
for an absolute offset of 2 Gb. If the section containing displaced code was added at
an address more than 2 Gb apart from the original code, this instruction will not be
usable to branch to and from this section. Such an offset may occur for instance if
the displaced code was to be added after the section containing uninitialised data,
which can reach such a size for some executables. In such a case, the patcher would
need to use an indirect branch or use a trampoline.

Another limitation is that the patcher does not update indirect branch instruc-
tions when they are moved. This is not a problem in the Intel 64 and Xeon Phi
coprocessor architectures, as all indirect branches they define use absolute address-
ing, but needs to be addressed when porting Madras to architectures where these
branches can contain relative addresses. This is for instance the case with some
indirect branch instructions in the ARM architecture.

5.4.5 Use in Maqao

The Madras patcher is fully integrated into the Maqao framework [39], allow-
ing Maqao to complement its static analysis with profiling and memory tracing.
The language Mil [43] (Maqao Instrumentation Language) offers extensive instru-
mentation functionalities and uses Madras for performing the low-level operations.
Figure 5.4 describes the integration of Madras into the Maqao framework and its
relationship with Mil.

Mil offers a simplified interface for instrumenting files, inserting function calls
or assembly code at various points in the CFG. It has been used to integrate the
Maqao instrumenting features to the TAU performance analysis tool [94].

The instrumentation functionalities of Mil were tested on the NAS parallel
benchmarks using OpenMP [55], allowing to establish a comparison on the overhead
induced by the instrumentation process with the DynInst and PEBIL instrumen-
tation tools. The results presented in figure 5.5 show that code instrumented with
Mil using Madras offers the lowest overhead and the better coverage for the files
considered in the experiment.

90 Chapter 5. Patching executables

Figure 5.4: Mil: Maqao Instrumentation Language and its integration in the
Maqao framework. Source: [43]

Figure 5.5: Comparing overhead time on NAS OMP benchmarks for MIL, Dyninst
and PEBIL using TAU. X axis reports the overhead ratio compared to the original
run. Lower is better. Overhead ratios greater than 10 are cut. A zero ratio means
a crash at runtime. Source: [43]

5.4.6 Use by Decan

Decan [68] is a Maqao module performing decremental analysis. This consists
in removing selected instructions accessing memory from executables in order to
identify their impact on the overall performance. Decan relies on the Madras API
to generate the modified executables, its fine granularity allowing it to operate at the
instruction level and precisely pinpoint which instructions in a loop or function are
responsible for the cycles spent. The transformations performed by Decan include:

• Removing some or all load and/or stores instructions from a given loop.

5.5. Conclusion 91

• Replacing memory address operands with a fixed memory address.

• Replacing instructions store instructions with loads and reciprocally.

Decan also inserts assembly code for timing the transformed loops. Madras allows
to restrict these transformations to a single iteration of a given loop thanks to its
handling of conditions.

5.5 Conclusion

In this chapter, we have presented an application of the list of instructions returned
by the disassembler in the form of a binary rewriter. This patcher performs code
displacement to address the challenges of binary rewriting and operates at low level
with a fine granularity in order to offer an extensive range of operations to perform.
It has been implemented as Madras for the Intel 64 and Xeon Phi coprocessor
architectures for the ELF files. The Madras patcher is functional and used in the
Maqao framework for instrumentation with better performance and coverage than
other notable instrumentation tools.

We will now present extensions to the work described so far in this dissertation.

Chapter 6

Extensions for Madras and
Minjag

Separate complementary solutions were presented in the previous chapters for al-
lowing a low-level access to binary code, while minimising the overhead brought by
the handling of evolving and varied architectures. These solutions were validated
by their implementation into the functional Madras tool and its associated code
generator Minjag. This chapter will now describe extensions allowing to enhance
the performance and abilities of this tool and further validate the principles involved
in its conception.

As an essential component of a functional framework used for research and in-
dustrial projects, Madras is subject to constant updates either required by the
new features implemented in Maqao or aiming at improving its performance, fine-
tuning its interface with Maqao, and expanding its coverage. We will focus here
on extensions affecting multiple components between the Madras disassembler,
patcher, and Minjag.

We will first describe methods allowing to improve the performance of the dis-
assembler, based on fine-tuning of the grammar representing the architecture and
its associated parser, in Section 6.1. We will then present constraints and solutions
brought by the implementation of new architectures, in particular ARM, in Sec-
tion 6.2. We will finally offer leads and methods for improving the coverage of the
patcher, in Section 6.3.

6.1 Optimising disassembly performance

The Madras disassembler is mainly used as the entry point of other tools for further
processing, which may be time consuming in itself. It is therefore important for the
disassembler to offer the best possible performance to avoid being a bottleneck in
the processing as a whole, and to offer accurate information so as to not invalidate
the end result of the whole analysis chain. One of the main goals of the extensions
of the disassembler is therefore the continuing increase of its speed and accuracy.
Special care must also be brought in avoiding for the implementation of the other
evolutions to be made at the expense of its performance, especially in speed.

6.1.1 Optimising disassembly speed

Profiling performed on the disassembly of large files showed that parsing represents
more than 30% of the total disassembly time. Improving the parser performance is
therefore liable to have a significant impact on the speed of the whole disassembly
process.

We believe however that the current state of the generated parser is close to the
maximal optimisation available while keeping an agnostic approach with regard to

94 Chapter 6. Extensions for Madras and Minjag

the architecture and that further improvements would offer a low return on invest-
ment. The achievement of significant improvements would then require allowing to
tweak the generation process or the resulting FSA in order to optimise the resulting
disassembly process with regard to the specificities of the architecture. A last resort
would consist in performing architecture-specific optimisation based on the generic
generated parser in order to handle cases where obtaining the optimal disassembly
speed is an issue.

Other leads that we will not cover here consist in improving the implementation
of the parallel mode described in 4.4.2.

6.1.1.1 Impact of the grammar format

Since the main motivation behind our work is to ease up the addition of new archi-
tectures and the update of those already implemented, the main constraint is to use
a representation of instructions as close as possible to the format used in the archi-
tecture documentation. It is for instance not acceptable if the addition of a single
mnemonic to the instruction set causes the edition of a dozen different lines in the
grammar, especially if this implies complex transformation. While this constraint
weighs on the choices made during the conception of the grammar representing an
architecture, it is however possible to devise different grammar structures fulfilling
these needs.

The formalism chosen for the grammar directly impacts the structure of the
FSA and therefore the performance of the resulting parser. A proportionally high
number of nonterminal symbols in a grammar will result in a higher number of
reduction states in the corresponding FSA. The parsing of a word following such an
FSA will involve multiple invocations of the functions handling reductions and of
the associated semantic actions, possibly leading to a slowdown compared to other
representations using less nonterminals.

For instance, let us consider the following possible encodings, where A, B, C and
D represent expressions represented by nonterminals:

A B 1000 C
A B 1010 D
B 1001 C
B 1011 D

A possible grammar for representing these coding rules could be a straightforward
transcription of them as productions of the start symbol:

Start: A B 1000 C
| A B 1010 D
| B 1001 C
| B 1011 D;

Using such a grammar, the parsing of a word represented as the first encoding of
the list (A B 1000 C) would go through the following steps:

1. Attempting to match the input against productions of A and B

2. Reduction of A

3. Attempting to match against productions of B

6.1. Optimising disassembly performance 95

4. Reduction of B

5. Attempting to match against 1000

6. Attempting to match against productions of C

7. Reduction of C

8. Reduction of the start symbol

However, another possible grammar representing the same coding rules could
distinguish codings beginning with the A symbol. A possible motivation for this
could be the simplification of semantic actions if specific actions are associated to
encodings beginning with the A symbol. The associated grammar would therefore
have the following structure:

Start: A AfterA | NotAfterA;
AfterA: B 1000 C | B 1010 D;
NotAfterA: B 1001 C | B 1011 D;

The steps performed for parsing the first encoding in the list according to such a
grammar would be identical to those for the simpler version of the grammar, with
an additional step between steps 7 and 8 consisting in the reduction of the AfterA
symbol. This alternate grammar therefore imposes an additional step during the
execution of the parser. While this description may allow an easier implementation
of the semantic actions, possibly avoiding additional tests, it is likely to increase
parsing time.

Conversely, a grammar using a restricted number of nonterminals, possibly re-
duced to the start symbol only, will result in a higher number of transitions for the
first state of the resulting FSA. This can impact the performance of the resulting
parser, especially if the transitions overlap because of the presence of unfixed bits,
as this case imposes multiple checks for matching transitions.

6.1.1.2 Grammar optimisation hints

A promising lead for optimising disassembly performance therefore involves the pos-
sible reformatting of the grammar to reduce the number of reduction steps or of
matching transitions. While those general guidelines can be helpful by themselves,
their implementation into the grammar format can be made easier using metrics de-
duced from grammar parsing and FSA generation. These metrics can be returned by
Minjag to provide hints for improving the grammar. We present here such metrics,
along with their methods of retrieval and their uses for improving a grammar.

Estimating the number of reductions By recursively counting the number of
nonterminals involved in a production, it is possible to know the maximum and
average numbers of reductions necessary to reduce a given symbol, excluding the
cases of recursive symbols by considering they can appear only once for the purpose
of establishing this metric. This allows to provide the average and maximal num-
bers of reductions required for parsing a word for the given grammar, along with
the productions and symbols for which the maximum is reached. This metric is
useful for identifying potentially excessive number of reductions which could slow
down the parsing process. The knowledge of the specific grammar lines or symbols

96 Chapter 6. Extensions for Madras and Minjag

responsible for this can help pinpointing the choices in grammar formalisation caus-
ing this potential loss of performance. This can be correlated with the number of
productions per symbol to allow identifying nonterminal present in multiple pro-
ductions while having only a single production; such symbols might be replaced by
this production in all the productions into which they appear to reduce the total
number of reductions during parsing. Conversely, this metric can be used to check
that the grammar has been correctly optimised with regard to this problematic.

Number of states and transitions Another metric available after generation of
the FSA consists in the number of transitions per shift states. A simplified example
of the results brought by this metric can be found in table 3.1, characterising the
grammars tested in Minjag. This allows to survey the repartition of transitions
per states and to pinpoint states containing a single transition. The identification of
those states and the associated grammar productions can help to detect possibly un-
necessary decompositions of encodings resulting in extraneous shift steps. Another
related metric consists in identifying the states containing transitions with multiple
matching values.

FSA profiling In order to weigh the importance of the hints returned by the pre-
vious metrics, a profiling of the FSA can be performed. This is done by activating a
special mode during disassembly where the parser logs the number of hits over each
state and each transition inside them. This knowledge is especially useful for identi-
fying the states most accessed during the disassembly of standard executables, and
therefore deduce which of them are liable to offer the best performance improvement
if optimised. This can also be used to optimise the disassembler with regard to the
type of files targeted by the analysis tool using it.

6.1.1.3 Tweaking the FSA generation

Another option for optimising the disassembly consists in improving the resulting
FSA. While the reformatting of the grammar is best performed manually, this opti-
misation can be performed during the generation process. A possible way for doing
this is through the addition of optimisation flags to Minjag, allowing to enforce
the addition of specific behaviours or assumptions to the generated parser. These
optimisations can act upon the metrics described in 6.1.1.2, possibly including the
results of profiling sessions for restricting their targets, and perform transformations
during parser generation equivalent to the corresponding grammar updates. Since
such transformations may slow down the parser generation process and may not
result in increased disassembly performance, they are left optional. Some of those
possible transformations are presented below.

Using extended states The parser generation can detect states with a single
transition and automatically extend the transitions of the states leading to them to
append this single transition. This is however not straightforward, as the reason
this was not done during standard parser generation is that the single transition
uses a reduced symbol while those leading to it use binary values, or reciprocally. It
is therefore necessary to use special states able to perform both matchings at once,
which is mainly applicable if the transition on binary values is the lone transition.
Another possible optimisation concerns the reductions of symbols appearing at the

6.1. Optimising disassembly performance 97

end of productions, which can be replaced by an extended reduction in order to
avoid multiple consecutive reductions. Such transformation involves the use of ex-
tended states allowing to perform such multiple reductions. A combination of those
transformations can also be envisioned through the use of extended states allowing
to perform matchings and reductions simultaneously.

Reorganising states Another optimisation aims at implicitly rewriting the gram-
mar in order to reduce the number of states. This can be achieved by attempting
to automatically identify cases such as the one in example presented in 6.1.1.1. One
possible lead is the detection of identical groups of productions appearing in inde-
pendent symbols. Another method involves the identification of similar transitions
between states reachable from identical prefixes. This optimisation may however
prove counterproductive if it prevents other simplifications to be applied, for in-
stance in the handling of semantic actions and needs to be validated. An hybrid
solution allowing user input consists in presenting the generated FSA as a manually
editable graph.

6.1.1.4 Interacting with the parser during disassembly

Another extension consists in the implementation of a very low-level API allowing to
directly access the inner mechanisms of the parser in order to tweak its behaviour.
The semantic actions could therefore use this API to take control of the parsing
process while it is executing. This would in effect allow Minjag to generate a
procedural parser.

This allows to add a measure of architecture specific code to the disassembler
from the base granted by the grammar representation of the architecture. For in-
stance, it would be possible to detect the first bits of special elements of the coding
and bypass the normal parsing process to either match a sequence of bytes against
its possible values or only check the relevant bits and directly generate the cor-
responding representation of instructions. Other possibilities involve the advance
detection of cases that should not occur and directly skip them.

An example of this technique with the Intel 64 architecture would involve detect-
ing the ModR/M byte in advance and directly match its possible values in a table
directly triggering the creation of the corresponding structures. Another example
involves the detection of opcodes not using this byte and bypassing the transitions
to retrieve the values of the following fields by directly storing the binary stream
into the structures representing instructions.

An extreme application of this extension would be equivalent to using Minjag
for generating a base representation of the encoding format and use this to build an
architecture specific disassembler.

6.1.2 Optimising disassembly accuracy

Detecting interleaved foreign bytes can be performed through the heuristics and
methods described in 4.3.1, which can be extended and further combined to handle
more cases.

Other methods involve the identification of jump tables inside the code through
a combination of pattern matching and detection of accesses inside the executable
code, correlated with a validation of the addressed instructions.

98 Chapter 6. Extensions for Madras and Minjag

6.2 New architectures

Since Madras was designed as a multi architecture tool, implementation of new
architectures is a crucial point in the validation of the theories involved in its concep-
tion. One branch of extensions therefore aims at validating the theories implemented
in Minjag and expanding its functionalities and coverage by testing it on different
architectures of interest to the HPC community, such as POWER ISA and Intel
Itanium, and completing the implementation of ARM.

The most challenging aspect of the ARM architecture is presented by its inter-
working instruction sets, which allow for instructions belonging to two different sets
to be present in the code section of a binary file. We should point out here that
this is different from the technique consisting in packing multiple executables com-
piled for different architectures inside a single file, such as is allowed by the Mach-O
multi-architecture binary format, as in this case each packed file contains informa-
tion allowing to retrieve its instruction set, while in ARM files using interworking
the information available from the format of the binary file contains no indication
about the different architectures involved.

6.2.1 Handling multiple instruction sets in a file

The principal challenge when dealing with the ARM architecture is the possibility
of a binary file to contain instructions belonging to the ARM and Thumb instruc-
tion sets. Since the binary encodings of those sets are overlapping, it is necessary
to identify when the binary code switches from one to another in order to avoid
disassembling erroneous instructions. Another impact of this possibility is that it
requires the disassembler output to include for each instruction the reference to the
architecture for which it is defined instead of storing this information at a higher
level, which may impact the memory used for representing disassembled instructions
handled by analysis tools.

6.2.1.1 Representing a list of instructions in the grammar

One possibility for this would be the redefinition of the grammar as describing a
whole binary stream instead of a single instruction. The start symbol of such a
grammar would then be reduced into a list of instructions, with the corresponding
parser considering a binary stream as a word. In this case, separate symbols would
be used to represent instructions from the different instruction sets involved, while
the instructions specifying the switch between sets would be represented as distinct
symbols.

Below is a simplified example of such a grammar:

Arch1_InsLst: Arch1_Ins Arch1_InsLst | Arch1_Ins ;
Arch2_InsLst: Arch2_Ins Arch2_InsLst | Arch2_Ins ;
Arch1_First: Arch1_InsLst SwitchToArch2 Arch2_First | Arch1_InsLst ;
Arch2_First: Arch2_InsLst SwitchToArch1 Arch1_First | Arch2_InsLst ;
Start: Arch1_First | Arch2_First ;

The parser and especially the disassembler would have to be adapted to take into
account the fact that it returns a list of instructions. This especially impacts the
handling of post-parsing actions, which would now be triggered after disassembling
a symbol representing an instruction, identified through the keywords indicating

6.2. New architectures 99

such a case in the associated semantic actions. The impact on encoder generation
is minimal, affecting only its input which change from a single instruction to a
list, while its output remains a binary stream. The implicit automaton used for
assembling will be able to use this representation to detect the relevant branch
instructions in the input list and adapt its parsing rules accordingly.

However, the main drawback of this approach is that it makes any particular
processing performed at the instruction level more complicated, especially if it in-
volves information not available from the executable code. This is the case for any
information retrieved from other sections in the binary file, such as labels or virtual
addresses. This will also impact any attempts at increasing the disassembler accu-
racy through recursive traversal techniques, as this would require the parser to be
able to follow the control flow inside the stream it is decoding.

For these reasons, this method will not be used for addressing this specific case.

6.2.1.2 Bundling different architectures in a grammar

Another method for handling multiple architectures in a single file that is closer
to the current implementation of the disassembler consists in switching to the ap-
propriate parser during disassembly. In this model, the two instruction sets are
represented as distinct grammars, each with a corresponding parser. The difficulty
resides in the detection of the instruction triggering the switch and the identification
of the parser to invoke when it is discovered, while keeping the agnostic approach
of the disassembler with regard to architecture.

Currently the disassembler deduces the parser to use for a file from the informa-
tion retrieved from its binary format. ARM files using interworking reference only
one instruction set, making the detection of the presence of the other instruction set
more difficult, especially in the context of avoiding the use of architecture specific
information at the higher levels of the disassembly process.

Our solution consists in allowing multiple grammar files to be bundled together.
This is different from the previous solution as both architectures will be described
in separate grammars that will be then merged inside a single file with a specific
header. The header of a grammar bundle contains the names of the architectures
representing the different grammars it contains, and, for each of them, the produc-
tion and associated semantic action allowing to switch to another grammar.

Below is a schematic example of such a bundle:

%bundle arch1, arch2
%switch arch1 arch2
<list of lines from grammar arch1 performing the switch>
...
%switch arch2 arch1
<list of lines from grammar arch2 performing the switch>
...
%grammar
<full grammar for arch1>
%grammar
<full grammar for arch2>

When parsing a bundle file, Minjag identifies each grammar and processes them
separately, building the corresponding FSA as if operating on a single file. It also

100 Chapter 6. Extensions for Madras and Minjag

singles out for each grammar the productions referenced in the header, and adds a
special flag to their corresponding semantic actions in the resulting FSA, referencing
the architecture to switch to. This flag can then be picked up by the disassembler
during execution, allowing it to perform the switch to the specified architecture as
if it had detected it from a file header. Minjag also adds the information about the
interworking architectures to the sources it generates containing additional informa-
tion retrieved from the grammar for each architecture, possibly including references
to the instructions performing the switch.

One advantage of this method is that it allows to update the bundled architec-
tures separately, in keeping with the general principles involved in the conception of
Minjag and Madras. Another is that it provides the necessary information to the
disassembler to allow it to handle the change without needing to have additional
knowledge of the architectures it is handling, thus preserving its agnostic approach.

6.2.1.3 Patching interworking files

As the patcher relies on the list of instructions returned by the disassembler, it can
identify the architecture for which each instruction is defined. This enables the invo-
cation of the relevant associated assembler when propagating patching modifications
to the binary code of instructions. Similarly, this allows to identify the architecture
for which must be defined the instructions added to perform code displacement or
context preservation.

Since the information about the instructions performing switching between ar-
chitectures retrieved from the grammar is also made available to the assembler, the
patcher is able to detect those instructions and adapt the used encoder accordingly.
This is mainly relevant when performing patch operations for inserting assembly
code from its language representation, for instance in the case where patching aims
at inserting code defined for a different architecture than the one used for instruc-
tions present at the site of the insertion.

6.2.1.4 Disassembling interworking ARM files

The handling of ARM files imposes additional processing, as the instructions used
to switch from an instruction set to another are branches. It is therefore necessary
to correctly identify their destination to allow the disassembler to apply the proper
parser, which can present problems if the branch is indirect. Another possible issue
is one of these branches pointing to an area of code that was already disassembled
with a possibly wrong architecture.

The ARM ABI defines specific label names identifying the areas of code belong-
ing to each different architectures, which can be used to complement the detection
of switching instructions during disassembly. Since the format used for the gram-
mar describing architectures allows the definition of ABI-specific information, the
nomenclature for these labels can be added to the bundle header or grammar files,
allowing it to be available in the generated code. The disassembler can then use
this knowledge to correlate information retrieved from the binary file with the pos-
sible interworking architectures referenced in the parser to switch the FSA used for
disassembly appropriately.

An alternate method involves the use of recursive traversal disassembly tech-
niques, possibly restricted to branches flagged as performing an instruction set
switch. A drawback of this approach is the possible excessive cost induced by

6.3. Patcher extensions 101

the analysis required to identify the targets of indirect branches and the possible re-
peated disassembly of blocks of code incorrectly identified as belonging to the wrong
instruction set. It is however useful for handling cases of files lacking information
for otherwise identifying the switches between instruction sets, which could happen
for specific compilers settings or implementations.

6.2.2 Other architectures

The support of Intel Itanium is another interesting challenge in order to validate the
implementation of the extended LR algorithm described in Section 3.3.4, although
the dwindling representation of this architecture in the HPC community makes it
a less likely target for analysis tools. Current testing has shown that a grammar
representing the Intel Itanium encoding rules could be processed without errors by
Minjag.

Another constraint brought by Itanium with regard to the handling of instruc-
tions in Madras and Maqao is tied to its use of bundles, which regroup 3 in-
structions. This impacts the coding and hence the expression of instructions in the
grammar. It is therefore necessary for the disassembler to take into account the fact
that a parsed word is not a single instruction. The drawbacks of using the parser
to return a list of instruction that were described in 6.2.1.1 do not apply in this
case, as the structure of the architecture ensures that no extensive operations such
as associating labels will have to be performed at the instruction level.

6.3 Patcher extensions

As a consumer of the list of instructions returned by the disassembler and user of
the code from the grammar, the patcher will benefit from extensions to either of
these components. In particular, the support of more architectures by the Madras
disassembler and assembler will allow the patcher to process files for those archi-
tectures with reduced implementation effort, mainly focusing on devising assembly
instructions to use for performing context displacement or context saving. While
the behaviour of the patcher has been designed to not be dependent on the archi-
tecture, the support of new architectures may also require the addition of further
mechanisms to ensure an optimal coverage of the available codes, such as handling
interworking code as described in 6.2.1.3.

We will focus here the extensions tied to improvements of the disassembly pro-
cess, the assembly process, and finally those offering new patching options.

6.3.1 Consequences of improved disassembly accuracy

The main extension tied to the evolutions of the disassembler include the detection
of jump tables. Extensions described in 6.1.2 allow to retrieve possible locations
of those tables when interleaved with code, which can be confirmed using pattern
matching correlated with analysis of the addresses present in the file. Being able
to identify more precisely these tables used by indirect branches allows to update
them when the addresses they contain correspond to instructions moved by the patch
operations and therefore increase the options available to the patcher for performing
the requested updates, resulting in better coverage.

102 Chapter 6. Extensions for Madras and Minjag

6.3.2 Increasing performance

Since the Madras patcher is designed to be part of a tool chain including dis-
assembler and analysis modules, and is intended to be used on complex or large
files where disassembling or analysis could be time consuming, obtaining the best
performance for the patching operations would prevent it to become a bottleneck.
Extensions aiming at improving the patching speed are therefore equally important.
One such extension concerns the assembler built from the grammar. Since the en-
coder follows an algorithm similar to packrat parsing, as it must give priority to the
shortest possible encodings for a given instruction, it can use memoization for better
performance, by storing the results of past matches to speed up further assembly
operations. This is especially useful when assembling list of inserted instructions or
updating portions of code modified by the patching operation.

6.3.3 Decorrelation of the patching process

Another branch of works aims at allowing to perform differed patching, by converting
the requested operations into a patch to be applied on the executable, separately
from the other operations performed in the analysis chain. A further extension
consists in the generation of patcher programs allowing to record and execute a
certain set of modifications to perform on a file. This is especially useful for patching
similar files without additional analyses.

For instance, analysis tools may need to instrument specific functions present in
multiple files, such as generic functions inserted by the compiler to support OpenMP
or MPI processes. This extension would allow Madras to generate a simplified
patcher targeting the specified instrumentation sites defined in these functions if
present in the file, therefore offering the possibility of patching all concerned files
without the overhead induced by the corresponding analyses for each of them.

6.4 Conclusion

In this chapter, we presented the principal extensions to the Minjag and Madras
tools allowing to increase the performance and coverage of the disassembler and
patcher. The performance of the disassembler can be improved by allowing to
tweak the generated parser, possibly including architecture specific code if speed is
an important issue. The structure of Madras and its reliance on code generated
by Minjag ensures that implementation of new architectures very different from
Intel can be done with minimal additional effort. Finally, while benefiting from the
extensions to the disassembler and encoder generation, the patcher can be extended
to improve its coverage and performance.

Chapter 7

Conclusion

We will now conclude this dissertation. We will first list the contributions of this
thesis then present further applications of its results and some of the research per-
spectives they offer.

7.1 Contributions

The thesis presents methods allowing analysis tools to operate at the binary level on
executables, which offers the most accurate representation of what will be executed
by the processor, but requires the ability to disassemble and patch files from multiple
evolving architectures. Tools operating on binary files usually maintain a hard-
coded representation of the binary architecture, leading to higher maintenance cost
for implementing new architectures and updating existing ones. They may also not
allow to customise the actions to perform when disassembling instructions, nor have
a fine-grained enough approach to patching.

Our first contribution is a solution for describing an ISA under a unified format
inspired from context-free grammars. We have shown that the use of LR-parsing for
disassembling binary code is possible with some tweaks from the standard theory
in order to take into account its specificities, namely the fact that instructions are
not separated from one another and can be of different length. This was addressed
by considering bit fields, instead of single bits, as terminals in the grammar sense.
The case where bit fields are a generalisation of one another was addressed by
ordering transitions in the generated automaton based on their level of precision.
This allowed us to build a disassembler generator, Minjag, using a grammar whose
structure is kept as close as possible to that of the ISA specification to allow for
easier updates. The grammar format also allows to easily build an assembler that
constitutes a basis for a patcher.

Our second contribution is an application of the code generated by Minjag to
implement a disassembler relying on LR-parsing, whose output is a unified repre-
sentation of instructions that can be expanded depending on the needs of the tools
using it, and allows them to remain agnostic with regard to the architecture used.
This disassembler is functional for the Intel 64 and Xeon Phi coprocessor architec-
tures and under testing for the ARM architecture, and is easily updated to follow
the architectures frequent evolutions. It is also able to return additional informa-
tion about disassembled instructions in a unified format. The performance of the
resulting disassembler is close to those of tools using hard-coded definitions of the
architecture coding rules in terms of speed, accuracy, or both, while allowing for
easier updates to keep up with the evolution of architectures and implement new
ones, and being available as a single executable or library. This allows to build anal-
ysis tools able to handle multiple architectures, which is essential for the analysis of
heterogeneous systems.

104 Chapter 7. Conclusion

Our last contribution makes use of the representation of instructions in a disas-
sembled file to offer a patching functionality. Patching presents specific challenges,
such as the preservation of the control flow and data environment. This was ad-
dressed by performing code displacement on patched areas. The implementation of
the patcher focused on offering the finer-grained approach possible, in order to allow
the higher level tools using it to choose the better options for the given code.

The disassembler and patcher were integrated into a functional tool, Madras,
which supports ELF files for the Intel 64 and Xeon Phi coprocessor architectures.
The Madras disassembler aims at offering a good compromise between speed and
precision, while providing helpful hints to the analysis tools using its output. The
Madras patcher offers a low-level interface allowing a fine grained control of its
actions, while being able to handle most cases in its default behaviour.

Madras is part of the Maqao analysis framework and is an essential part of
its life cycle. The disassembler is the entry point of all static analyses, while the
patcher is used by the Mil and Decan modules to perform all instrumentations
or other transformations. The multi architectural nature of Madras, provided by
Minjag, ensures that Maqao can be easily adapted to support new architectures
with minimal implementation effort. Figure 7.1 summarises the tools relationships
and modes of operation.

Figure 7.1: Global description of the Madras and Minjag interconnection and of
Madras operating mode.

7.2 Future works

We will present here the perspectives offered by the various contributions of this
thesis, either as extensions of tools functionalities or as subjects of further research.

7.2. Future works 105

7.2.1 Implementing extensions

One branch of work consists in the implementation of the extensions described in
Chapter 6.

Further extensions involve facilitating the implementation of a disassembler from
the files generated by Minjag, taking the form of a toolkit of low-level primitives
that could be used when implementing the macros representing the semantic actions
of the grammar.

Another subject involves extending the binary parser to other formats such as
WindowsPE or Mach-O, allowing to disassemble and patch files using these formats
for the supported architectures. This implies adapting the patcher to handle be-
haviours varying depending on the ABI, such as parameters passing or invocation
of dynamic functions.

Other extensions involve the use of the Madras disassembler by other tools
using its ability to return additional information about instructions. An example
of this would be using this information useful to analysis tools focused on power
consumption instead of performance analysis.

7.2.2 Future research

An extension involving original research aims at simplifying the generation of the
grammar representing the ISA, which is currently built from the list of instructions
for the architecture through a simplified script. Since this list of instructions does not
obey a specific format, this script has to be adapted for every architecture. A useful
evolution would then be the definition of a unified format for this instruction list,
allowing to use the same script to be used for all architectures, while remaining as
close as possible to the format used by the architectures developer manuals, turning
in effect the grammar into an intermediate representation of architectures with the
instruction list becoming the entry point. The full specification of a format able to
describe all types of architectures and of the associated algorithms for translating
it into grammar format presents interesting challenges.

Since the Madras disassembler aims at providing the most accurate representa-
tion of the binary file, another interesting lead would be the retrieval of information
from the data sections, especially in the identification of individual variables. The
bytes in the data sections of the files are not separated depending on the variable
which they represent and, while pattern matching could be used to identify specific
variable types such as arrays or strings, there is no unified method to identify all
variables from their values. It is however possible to extrapolate their location in
the data sections from some of the information present in the file, such as labels or
memory operands referencing addresses in this section.

Another point of interest is tied to the increase of the disassembler accuracy.
Some of those works were covered in 6.1.2. Further algorithms and heuristics would
allow the disassembler to handle obfuscated and even self-rewriting codes, which is
challenging if it has to induce a minimal overhead. This is also interesting when using
the disassembler outside the context of performance analysis, such as protection
against potentially dangerous files. The knowledge gained from this can then be
used to increase the security of executables by reducing their vulnerability to reverse
engineering techniques.

Appendix A

Minjag developer documentation

Here is a detailed descriptions of the implementation of the encoder and decoder
generation principles as Minjag.

A.1 Description

Minjag is a set of scripts and executables allowing to generate the source code
for decoding and encoding the instruction set of a given architecture from a list of
instructions and their coding rules.

We will focus here on the minjag executable, which allows to generate the
code from a grammar. The scripts generating this grammar mainly perform the
conversion from the human-readable instruction list to the slightly less user friendly
grammar format. They also enforce grammar coherence, for instance ensuring that
instructions with an identical opcode but a different mandatory prefix are added to
the productions of different symbols.

The minjag executable (referred to from now on as minjag) performs the fol-
lowing functions:

• Parse the grammar file representing an architecture.

• Build the associated Finite State Machine (FSM).

• Generate the corresponding source files.

The source for minjag is entirely written using the C language and contains 11,000
lines of code. Its total implementation time is estimated to 12 months as of the
writing of this dissertation.

A.2 Using minjag

To run minjag, use the command:

$ minjag [-o <directory> OPTIONS] <grammarfile>

where <grammarfile> is the path to the grammar file to use and OPTIONS can
take the following values:

• -o, --output-directory <directory>: Sets the directory where the files will
be written. If not set, the directory containing <grammarfile> will be used.

• -i, --info: Activates the info mode (disabled by default). The FSM states
will be copied to file <grammarfile>.states in the logs directory.

• -t, --test: Activates the test mode (disabled by default). The source files
will not be generated, only the FSM states.

108 Appendix A. Minjag developer documentation

• -L, --logs-directory <directory>: Sets the directory where the log files will
be written. If not set, the directory containing <grammarfile> will be used.

• --insnlist: Prints the list of instructions present in the grammar file into
<grammar>.inlist.

• -h, --help: Displays the help.

The following options allow to generate some of the files only or to exclude files
from generation. The --only flags are cumulative and prevent the generation of
other files.

• --arch-only: Only generates the architecture definition file.

• --sym-only: Only generates the grammar symbols definition file.

• --fct-only: Only generates the files relative to semantic actions functions.

• --final-only: Only generates the files relative to the post-parsing functions.

• --fsm-only: Only generates the FSM definition files.

• --revfct-only: Only generates the files relative to the encoding functions.

• --asm-only: Only generates the files relative to the assembly functions.

• --no-arch: Does not generate the architecture definition file.

• --no-sym: Does not generate the grammar symbols definition file.

• --no-fct: Does not generate the files relative to semantic actions functions.

• --no-final: Does not generate the files relative to post-parsing functions.

• --no-fsm: Does not generate the FSM definition files. This also disables the
generation of the FSM.

• --no-revfct: Does not generate the files relative to the encoding functions.

• --no-asm: Does not generate files relative to assembly functions.

A.3 Grammar format

We will describe here the format of the grammar accepted by Minjag.

A.3.1 Outline

The grammar must contain the following sections (in this order):

• Begin code (optional).

• List of tokens, definition, and architecture specification.

• List of grammar symbols with their respective expansions.

• End code (optional).

The code sections are enclosed by the “%{” and “%}” strings. The list of variables
must be enclosed by “%%” strings. The character ‘#’ at the beginning of a line sets
the whole line as a comment and prevents it from being parsed.

A.3. Grammar format 109

A.3.2 Begin and end code sections

Those two sections will be copied verbatim at the beginning and end of the generated
file header describing the architecture (<archname>_arch.h). They can be left
blank if not needed, otherwise they must contain standard valid C code. No check
is made during the parsing of the grammar, so any error in those sections will be
detected only when compiling the generated files.

A.3.3 Declarations section

This contains the declaration of tokens, definitions, and architecture specification.

A.3.3.1 Tokens

A token is a terminal symbol in the grammar with a fixed length but undefined
value. A token declaration must specify its length and endianness. There are 3
different possible endiannesses for a token:

• Lower bit first: The leftmost bit is the lowest order bit. Example: 00101000
10101100 corresponds to the hexadecimal value of 35 12.

• Lower byte first: The leftmost byte is the lowest order byte. Inside a byte,
the leftmost bit is the highest order bit. Example: 00101000 10101100 cor-
responds to the hexadecimal value of AC 28.

• Bigger bit first: The leftmost bit is the higher order bit. Example: 00101000
10101100 corresponds to the hexadecimal value of 28 AC.

A token is declared as follow:

%token <S,E> mytoken

Where mytoken is the token name, beginning with a letter or ‘_’ and containing
letters, numbers, ‘_’ or ‘-’, S its length in bits, and E its endianness, coded as ‘l’ for
lower bit first, ‘L’ for lower byte first, and ‘b’ or ‘B’ for bigger bit first.

A.3.3.2 Definitions

A definition is a symbol that actually stands for one or more different symbols.
Each line containing an occurrence of this definition in the grammar will be replaced
during parsing by as many lines as the number of symbols the definition stands for,
each containing a different symbol. It can be used to reduce the size of a grammar
when for instance it contains multiple lines differing from each other by a symbol.

A definition must be declared as follow:

%define mydefine var1 | var2 | var3 ;

where mydefine is the definition name, and var1, var2 and var3 the names of the
symbols it stands for. If a grammar using the definition above, the following line:

myvar:001 mydefine 11;

will be parsed as:

myvar:001 var1 11 | 001 var2 11 | 001 var3 11 ;

110 Appendix A. Minjag developer documentation

Definitions can contain either terminal symbols with a fixed value or nonterminal
symbols, but not a mix of both. There are no limitations on the number of symbols
that can be contained in a definition, but a greater number of symbols inside a
definition can increase parsing time.

A.3.3.3 Architecture specifications

The grammar can contain a number of definitions for the description of the architec-
ture. Each of these definitions is identified by a keyword at beginning of a new line
and prefixed with the character ‘%’. Below is a description of the current accepted
definitions:

• archname: This definition is mandatory. It must be followed by a string
describing the architecture. This string will be used as a suffix for every
generated file and as an identifier for the architecture in the code. Example:
%archname x86_64

• regtype: This definition specifies a type of register in the architecture. It
obeys the following format:

%regtype typename regfamily regsize regnames;

with:

– typename: Identifier for this type of register. It must be a distinct string
for each register types.

– regfamily: The name of the family to which the register type belong. A
family name can be shared between multiple register types. This is used
to identify registers representing parts of other registers.

– regsize: Keyword identifying the size of the register.

– regnames: Comma-separated list of register names of the given type. It
is advised to have those names appear in the same order as the index
representing them in binary format, leaving a space if a given index has
no associated register. A register name can be followed by flags beginning
with a ‘/’ character for specifying additional information. Currently, the
only supported flags are A and R, respectively indicating that the register
is used to pass parameters to routines or contain return parameters from
routines by the ABI.

• insn: This definition specifies additional information about instructions in
the architecture. It obeys the following format:

%insn information value

Currently the following keywords for information are recognised, any other
keyword being ignored:

– maxlen: Maximum length in bits of an instruction

– minlen: Minimum length in bits of an instruction

A.3. Grammar format 111

A.3.4 Symbols definitions

A symbol name must begin with a letter or the ‘_’ character, and can contain letters,
numbers, ‘_’ or ‘-’. A grammar symbol must be defined as follows:

Symbol: A B C #[Macro1]#
| D E #[Macro2]#
| ... ;

where A, B, C, D and E are either symbols defined elsewhere in the grammar, tokens
(defined in the A.3.3.1 declaration section) or fields of bits (succession of 0 and
1 characters). Macro1 and Macro2 are macros representing the semantic action
associated to the reduction of the symbol (see A.3.4.2).

For clarity, it is advised to separate the different possible expansions of a symbol
with carriage returns, as in the example above, but this is not mandatory.

A.3.4.1 Restriction and constraints

The symbol names must be unique. A production can not contain multiple occur-
rences of the same symbol. Every symbol used in a production must be declared
in the grammar, either as token or another nonterminal symbol. An error will be
raised if a symbol is used undeclared. The start symbol, from the expansion of
which every other symbol may be eventually reached, must be named “template”.

Due to some internal operations made by the parser when building the finite state
machine, no symbol must have the name “Axiom”. The grammar supports recursive
declaration, where a symbol appears in one of its productions. The current version
of the parser does not handle well the grammars where some expansions of different
symbols can be identical to one another until a symbol is reached.

A.3.4.2 Semantic actions

Each production of a symbol must have an associated semantic action enclosed
with “#[” and “]#”. Semantic actions are represented by macro-like statements: a
keyword, followed by any number of arguments enclosed in parentheses.

Semantic actions macros must obey the following rules:

• Only one macro must appear for a given semantic action.

• Macros must have either of the following prefixes: BIN_, INSN_ or OPRN_.
Statements without one of these prefixes will be ignored

• Macro parameters can be either constant values (strings), references to a sym-
bol in the associated production identified with the symbol ‘$’ followed by the
order of appearance of the symbol in the expansion starting at 1, or another
macro the name of which is not required to have one of the mandatory prefixes.

Instruction macros The semantic action associated to the reduction of a symbol
representing an assembly instruction must be a macro with the prefix INSN_. Such
a macro must have the following prototype:

INSN_xxxx(mnemonic, \textcolor{keyword}{set}, family,
annotation, operand1, operand2, ...)

112 Appendix A. Minjag developer documentation

where:

• mnemonic is the mnemonic of the instruction, written in upper case. The
current version does not support mnemonics containing a space character (this
can happen if a mnemonic has a mandatory prefix). A possible workaround is
to use an underscore (‘_’) to replace the space.

• subset is a string representing the instruction set to which the instruction
belongs, if more than one are available for the given architecture. It is advised
to prefix it with ISET_.

• family is the family (mov, add, . . .) to which the instruction belongs. It is
advised to prefix it with F_.

• annotate is the default annotation associated to this instruction, as defined
in the base Maqao definitions for representing instructions.

• operand1, operand2, etc are the operands of the instruction.

• Other parameters can be added after the list of operands.

Instruction operand macros The operand of an instruction must be represented
by a macro with a OPRN_ prefix. They have no restrictions on the number or type
of arguments.

A.4 Source file generation

We will now describe the files generated by Minjag, which include those allowing
to execute the parser and encoder, as well as those containing the description of the
architecture defined in the grammar.

A.4.1 Outline

All generated files are prefixed with the name of the architecture, as defined in the
grammar. If no architecture was defined, the files are prefixed with the base name
of the grammar file, and the architecture description files are not generated. The
following files are created:

• archname_arch.h / archname_arch.c: Those files contain the definition
of the structure representing the architecture, as well as macros for the iden-
tifiers of the names and types of the registers for this architecture. Their
generation is described in A.4.2.

• archname_assembler.h / archname_assembler.c: Those files contain
the declaration of the function allowing to encode an instruction. Their content
is fixed and only depends on the architecture name.

• archname_fct.h / archname_fct.c: Those files contain the declaration of
functions encapsulating the macros corresponding to the semantic actions of
the grammar. Their generation is described in A.4.3.1.

• archname_finalfct.h / archname_finalfct.c: Those files contain the dec-
laration of functions encapsulating the macros corresponding to the post-
parsing actions. Their generation is described in A.4.3.2.

A.4. Source file generation 113

• archname_fsm.h / archname_fsm.c: Those files contain the declaration
of all the variables used to run the FSM for this grammar. Their generation
is described in A.4.4.

• archname_macrofinal.def: This file contains the list of all macros that
can be run after a successful parsing (they are used in archname_finalfct.c).
It is not intended to be a source file, but to allow the generation of one. Its
generation is described in A.4.5.

• archname_macros.def: This file contains the list of all macros correspond-
ing to a semantic action (they are used in archname_fct.c). It is not intended
to be a source file, but to allow the generation of one. Its generation is de-
scribed in A.4.6.

• archname_revfct.h / archname_revfct.c: Those files contain the decla-
ration of functions encapsulating the macros corresponding to reverse semantic
actions. Their generation is described in A.4.3.3.

• archname_revmacros.def: This file contains the list of all macros used
for performing the encoding (they are used in archname_revfct.c). It is not
intended to be a source file, but to allow the generation of one. Its generation
is described in A.4.7.

• archname_sym.h: This header contains the definition of identifiers for the
symbols of the grammar. Their generation is described in A.4.9.

A.4.2 Generation of the architecture definition

These files contain the declaration of the structure describing the given architecture.
The following notable fields of the structure are set:

• name: Architecture name, retrieved from the archname field in the grammar.

• mnemonic: Array of mnemonics names, retrieved from the INSN_OPCODE
macros in the grammar.

• families: Array of family names, retrieved from the INSN_OPCODE macros in
the grammar.

• size_mnemonics: Number of mnemonics.

• reg_names: Bi-dimensional array of register names by types, retrieved from
the regtype fields in the grammar.

• regs: Bi-dimensional array of register instances, built from the names and
types retrieved from the regtype fields in the grammar.

• reg_sizes: Array of different register sizes, retrieved from the regtype fields
in the grammar.

• reg_families: Array of different register families, retrieved from the regtype
fields in the grammar.

• noprnd_min: Array of minimal number of operands per mnemonic, computed
amongst all the occurrences of INSN_OPCODE with a given mnemonic parameter
in the grammar.

114 Appendix A. Minjag developer documentation

• noprnd_max: Array of maximal number of operands per mnemonic, computed
amongst all the occurrences of INSN_OPCODE with a given mnemonic parameter
in the grammar.

• dflt_anno: Array of default annotate flags per mnemonic, calculated amongst
all the occurrences of INSN_OPCODE with a given mnemonic parameter in the
grammar.

• nb_type_registers: Number of different register types, deduced from the
regtype fields.

• nb_names_registers: Maximum number of register names per types, de-
duced from the regtype fields.

• return_regs: Array containing all registers which can be used to return a
value at the end of a function.

• nb_return_regs: Size of return_regs.

The header also contains the following macros:

• Each mnemonic is defined as a macro, beginning with I_ and followed by the
name of the mnemonic. This macro maps to a unique number starting at 0.
This number is the index of the mnemonic name in the mnemonic array in the
structure representing the architecture.

• Each instruction subset is defined as a macro, mapping to a unique number
starting at 1. This number is used in the insn_set field of the structures
representing disassembled instructions.

• Each register type is defined as a macro, mapping to a unique number starting
at 0. This number is the index of the line containing the registers of this
register type in the reg_names and regs arrays in the structure representing
the architecture.

• Each register index is defined as a macro, mapping to a unique number starting
at 0. This number is the index of the column containing the registers with
this index in the reg_names and regs arrays in the structure representing
the architecture. This index is determined by the order into which registers
appear for a given type in the regtype fields in the grammar.

• Each register family is defined as a macro, mapping to a unique number start-
ing at 0. This number is used in the reg_family array from the structure
representing the architecture.

A.4.3 Handling files with macro definitions

Files defining functions encapsulating macro invocations share the following char-
acteristics:

• They contain functions whose body is the invocation of the macro

• For clarity and to ease up comparison for non-regression tests, those functions
are written in the order of increasing identifier. This identifier increases in the
lexicographical order of the macros used by the function.

A.4. Source file generation 115

• To avoid compilation warnings, a function is declared only if the macro it
contains is defined. Thus, all function declarations using a given macro are
enclosed within a #ifdef statement testing the definition of the macro.

A.4.3.1 Generation of the semantic action functions

Those files contain a series of functions whose prefix is defined by the architecture
name followed by the value of the MACROFUNCNAME macro, and suffixed by a unique
identifier starting at 0.

Each of those function takes as parameter an array of pointers. Its body consists
in the invocation of a macro, passing as parameters the relevant cells in the array of
variables, which are identified by the identifier of the associated grammar symbol,
as defined in the symbol list (see A.4.9).

The return type of those functions is void if the associated macro corresponds
to a semantic action; in that case, the first parameter of the macro is the cell in
the array where the result of the semantic action will be written. Otherwise, if the
macro is invoked by another macro, the function returns a pointer, which is also
retrieved from the first parameter of the macro.

A.4.3.2 Generation of the post-parsing functions

The name of functions for end-parsing actions are prefixed by the architecture name
followed by the value of the FINALFUNCNAMEmacro, and suffixed by a unique identifier
starting at 0.

Each of those functions takes as parameter a pointer to the object generated after
the successful parsing of a word, and another pointer used for passing additional
information if needed. Their body consists in the invocation of a macro, passing the
parameters of the function to it.

A.4.3.3 Generation of the matching functions for the encoder

The matching functions for the encoder are those that will be responsible of checking
whether a given input matches with the data returned by a semantic action.

They are printed by encapsulating a semantic action macro, followed by all
macros it invokes, which we will call sub macros in this context. The naming
conventions for the printed macros are identical to those described in A.4.6. An
additional parameter, FOUND, is added to the printed macros. It is intended to be
updated by the macro and set to TRUE if the entry is found matching. When the
macro is invoked in the function, its FOUND parameter will be fed with a local variable
to the function, found, which is initialised to TRUE and is also the return value of
the function.

Matching functions are printed to take as parameters an array of pointers and
another of 64-bits integers, which will be used respectively for the variable and token
parameters of the macros. The parameters will be stored at the index corresponding
to the identifier of the symbol.

The functions are printed so that the invocation of the sub macros is conditioned
to the local found variable being still TRUE.

116 Appendix A. Minjag developer documentation

A.4.4 Generation of the FSM structures

The FSM is described as structures representing the states and transitions, defined in
the header file. The associated source file only contains inclusion of an architecture
independent file defining the function returning the array of state.

A.4.4.1 Transitions

There is a distinction between structures representing transitions over bit fields and
those over variables.

Transitions over bit fields Transitions values of a given shift state are broken
down into sub values, as described in Section 3.3.4.3.

Transitions on infinite length (corresponding to a transition over a null value)
are not included when breaking transitions into sub values. If a shift state contains
such a transition, its next state will be added in the definition of the state.

A sub value is identified by its value and its mask, which specifies which bits in
the value are fixed (they are set to 1 in the mask). Sub values of identical length,
index, and preceding sub values are grouped into lists and tables.

A list contains all the sub values which could take a given value because of the
masks, in the same order the corresponding transitions were ordered in the state.

A table of sub values is an array of lists whose size is the total number of values
possible with the length of the sub values it contains (2length). Each cell of a table
contains the list of sub values which could take as value the index in the table. It
is important to note that sub values containing unfixed bits (mask is smaller than
2length − 1) will appear in multiple cells of the array.

If a table should contain a single sub value, it is a 1 cell array containing the
value, and will be identified with the SUBTBL_SINGLEVALUE flag. If this single sub
value has a mask set to 0 (no useful bits), the table will be identified with the
SUBTBL_ALWAYSOK flag instead. In this case, the corresponding sub value may be
larger than 8 bits if the following sub values also have a mask set to 0. This is the
only case where a sub value will be larger than 1 byte, and it will never be used for
comparison by the FSM. This exception is used for optimisation when dealing with
transitions larger than 1 byte and containing only unfixed bits.

Finally, a sub value also contains a pointer to the table of the sub values that
could follow this sub value. If this sub value was the last in a transition, this table
will be set to NULL and contain the transition of the next state instead.

Transitions over variables Variable names (when reducing symbols) are defined
as numbers in order to reduce size and comparison times. For a given state, tran-
sitions over reduced symbols are stored in an array whose size is the number of
variable symbols from the grammar. The array contains either the identifier of the
next state or the STATE_NONE identifier when the state does not contain a transition
for this symbol.

A.4.4.2 States

The states containing only one item and no transition are reduction states. States
containing at least one item whose step is at the end of production and at least one
transition are shift/reduce states. All other states are transition states. An array

A.4. Source file generation 117

containing all the states is also printed, ordered by their identifier, with the first
state in the FSM being at index 0.

A.4.5 Generation of the list of post-parsing macros

A post-parsing macro is generated for each semantic action corresponding to the
reduction of an instruction, identified by containing a macro prefixed with INSN_
(cf. A.3.4.2). Its name is built from the instruction mnemonic, concatenated with
its operands type and size, as represented in the following example for an instruction
with two operands Op1 and Op2:

IN_<Mnemonic>_OP_<Op1 type>_<Op1size>_OP_<Op2 type>_<Op2size>

A.4.6 Generation of the list of semantic action macros

All macros used in semantic actions are printed in a list, as they should appear in
the header defining them.

The name of a macro is built from its name as it appears in the grammar, suffixed
by a unique identifier of 4 characters. These characters are hexadecimal numbers (0
to 9 and A to F) and represent the number of parameters of the macro with a given
type. Those types are respectively:

• Another macro.

• A constant (another macro with no parameters).

• A grammar nonterminal symbol (actually the value returned by the semantic
action triggered by the reduction of this variable).

• A grammar token (the value of the token as encoded in binary).

The macro parameters are, in the order by which they appear:

• A parameter named OUT.

• The macro parameters, named MCRx, x starting at 0.

• The constant parameters, named CSTx, x starting at 0.

• The variable parameters, named VARx, x starting at 0.

• The token parameters, named TOKx, x starting at 0.

The macro is followed by comments (formatted as C comments), detailing the
possible values for the macro parameters, as well as the grammar symbols for which
this macro is a semantic action.

A.4.7 Generation of the list of encoding macros

The list of encoding macros is built identically to the list of semantic action macros
described in A.4.6, with the exception that an additional parameter, FOUND, is added
first to the macro parameters.

118 Appendix A. Minjag developer documentation

A.4.8 Generation of the encoding structures

The encoder is built from structures representing reverse semantic actions and sym-
bol encoding rules. A reverse semantic action contains the pointer to the corre-
sponding matching function, printed in A.4.3.3, and a description of the elements
of its binary expression, including the encoding rules for the nonterminal symbols
it contains. A symbol encoding rule is a list of reverse semantic actions correspond-
ing to all the possible expansions of the symbol. We use the same structures and
functions to print the upward actions and encoding rules, while they represent the
completion of a partially encoded input that was not encoded into the start symbol.

The generation of reverse action structures is done through the following steps:

1. Build a list of all symbols that have at least one production whose semantic
action either is an instruction or recursively contain a symbol that does.

2. This list is built so that the path of recursion between the top-most symbol
and a symbol having a production whose semantic action is an instruction is
the shortest possible.

3. For each symbol, the list contains the semantic action macro of the production
the symbol belongs to.

The generation of a reverse encoding rules structure for a symbol is done by
printing an array containing pointers to the reverse semantic action structures cor-
responding to each possible expansion of the symbol. The generation of an upward
reverse encoding rules structure for a symbol is done by printing an array contain-
ing pointers to the reverse semantic action structures for all symbols between the
symbol and the top most symbol. In both cases, the reverse actions are printed in
order of increasing size of the associated binary expression.

Finally, structures representing the encoding rules for instructions are printed.
They are handled as the encoding rules of a symbol and contain pointers to the
structures representing the reverse of all semantic actions of type INSN_ containing
the given instruction as mnemonic name.

A.4.9 Generation of the symbols list

The symbols list is written as an enumeration, containing the names of all grammar
symbols. Symbols representing nonterminal are written first. The symbols are
printed in lexicographical order, with the following exceptions:

• The first element of the enumeration has no associated symbol.

• The second element of the enumeration is the actual start symbol Axiom.

• The third element of the enumeration is template the grammar start symbol.

A.5 Implementing a new architecture

Implementing a new architecture with Minjag is done through the following steps:

1. Create the grammar from the instruction list.

2. Building headers from the .def files:

A.5. Implementing a new architecture 119

• Writing disassembly macros for semantic actions.

• Writing assembly macros for reverse semantic actions.

• (Optional) Writing final macros

The grammar header must obey the grammar syntax described in Section A.3.
It must contain the variables relative to the architecture description as specified
in A.3.3.3. In addition, all tokens, defines, and non terminal symbols used in the
instruction list must be declared there if needed.

A.5.1 Building the headers from the .def files

Headers have to be built from the corresponding ∗.def files. The main modification
is to add the #define keyword before the macro names. It is advised to keep the
header file synchronised with the corresponding ∗.def file so that the comments
are updated, making implementation easier. To avoid compilation warnings, it is
advised to comment or remove an unused macro from the header instead of leaving
it defined with no value, as functions using them will be excluded from compilation
by a preprocessor directive if the macro is not defined.

A.5.1.1 Writing macros for semantic actions (disassembly)

The semantic actions macros accept 4 types of parameters : macro, constants,
variables and tokens. A comment after each macro lists the possible values for
each parameter. All macros have at least one parameter, OUT. The parameters are
described in more detail in A.4.6. When the parser is used for disassembling, those
macros are expected to allocate the representation of an instruction. When writing
the code for disassembly macros, the following points have to be taken into account:

• Each macro represents the body of a different C function, except for macros
invoked by another macro.

• The OUT parameter of the macro represents its return value. It is expected to
be a C pointer (type void∗).

• Parameters of type macro (MCRx) are actually the direct invocation of the
corresponding macro. The code should handle such a parameter as if it was
the invoked macro itself.

• Parameters of type constant (CSTx) will be used as such by the macro. They
have to be defined somewhere, or may be concatenated to another string to
create the name of a different identifier.

• Parameters of type variable (VARx) are C pointers (type void∗). They are
the trickiest to handle, as they will contain the “return” value (OUT parame-
ter) of the macro that was invoked as semantic action of the reduction of the
corresponding grammar nonterminal symbol (variable). As such, it is imper-
ative to ensure that the same type of data will be returned by all semantic
actions possibly invoked when reducing the grammar variables possibly used
as parameter of a given macro.

• Parameters of type token (TOKx) are paramcoding_t structures and can be
accessed with the appropriate functions from the FSA sources.

120 Appendix A. Minjag developer documentation

A.5.1.2 Writing macros for reverse semantic actions (assembly)

The reverse semantic action macros have the same type of parameters as the seman-
tic actions macros, with the OUT parameter being replaced by INPUT and FOUND (see
A.4.7). All parameters of the macros except the INPUT and constant parameters are
return parameters and must be updated by the code of the macro. When used for
assembling, those macros are expected to check if a given input matches a pattern
(which is what the associated semantic action returned), and build the coding for
the symbols present in the associated grammar production. The following points
have to be taken into account when writing the code for assembly macros:

• Each macro will be invoked in the body of a different C function, along with
the macros it invokes.

• The FOUND parameter must be set by the macro to TRUE if the match was
successful or FALSE otherwise.

• The INPUT parameter of the macro represents the input data to match. It is
expected to be a C pointer (type void∗).

• Parameters of type macro (MCRx) will be used as INPUT parameters in the
corresponding macro invoked by the current macro. The constraints about
the type of data they contain are the same as those described in A.5.1.1.

• Parameters of type constant (CSTx) will be used as such by the macro, and are
handled like the constant parameters of semantic actions macros as described
in A.5.1.1.

• Parameters of type variable (VARx) will be used as input by encoding rules of
the corresponding grammar symbol and thus will be used as INPUT parameters
by all possible reverse semantic action macros for this symbol. The constraints
on the data type are the same as those described in A.5.1.1.

• Parameters of type token (TOKx) are 64 bits integers to set at the correct value.

A.5.1.3 Writing final macros

Those macros will form the body of functions invoked after a successful parsing.
What they do is entirely left up to the needs of the application using the disassem-
bler; they are not required by the parser and can be all safely commented out.

Each of those macros accept two C pointer parameters (void∗). The first is the
structure returned by a successful parsing. The second parameter is user defined
and can be used to pass additional information.

Appendix B

Madras API

Operating the Madras disassembler and patcher and possible through an API
allowing to access their functionalities. We will describe here this API.

The libmadras API allows to pilot the disassembly and patching of a binary file,
and some examination of its contents. Patching operations cover inserting function
calls or assembly instruction, delete or modify existing assembly instructions, and
modify the list of libraries needed by a file.

libmadras is available on architectures supported by the patcher, disassembler,
and binary parser. In the current version, only the Intel 64 and Xeon Phi coprocessor
architectures under the ELF binary format are supported.

The source for the whole Madras disassembler, patcher and API is entirely
written using the C language and contains 30,000 lines of code for its architecture
independent core, plus 8,000 lines for each implemented architecture. Its total im-
plementation time is estimated to 24 months as of the writing of this dissertation.
As a part of the Maqao framework, Madras is intended to be released as Open
Source along with it.

B.1 libmadras structures

The main structure used by libmadras is elfdis_t. It is used to store a disassem-
bled file, the modification requests and logging settings. An elfdis_t structure is
returned upon disassembling a new file. It must be freed using madras_terminate.

All subsequent libmadras functions need a pointer to the current elfdis_t
structure. It is not advised to access directly the members of an elfdis_t structure.

B.2 Disassembling functions

The main function for disassembly is madras_disass_file. It needs a valid file
name and will return a pointer to a new elfdis_t structure containing the disas-
sembled file. None of the structural analysis functions from the core components
of Maqao are performed on the disassembled file. Only the information from the
disassembly are available.

The API allows to retrieve information on the disassembled instructions. This
part of the API is subject to change or become obsolete in the following releases of
Madras and will not be detailed here.

B.3 Patching functions

The functions allows to patch a file and save the results to a binary file. This
operation is defined as a patching session by the Madras API. A patching session
contains the following steps:

122 Appendix B. Madras API

1. Patcher initialisation: this operation sets the variables needed for the session.

2. Patch requests: registering a series of patching requests. No patching is actu-
ally performed at this stage.

3. Patch commit: this step must always be the last one in a session. It performs
all the patch requests and writes the result to another file.

In the current version, only one patching session can be performed on a disas-
sembled file. It is also not possible to produce multiple patched files from a single
disassembled file. It is advised to terminate the elfdis_t structure after a patching
session has been completed. If other patching operations are needed, a new structure
must be created by disassembling the file once again.

Because patching operations are all performed during the commit, all potential
patching errors will be reported at this point only.

B.3.1 Patcher initialisation

Patcher initialisation must occur before applying any patch requests. It is performed
through the function madras_modifs_init.

This function also allows to choose the method used for saving the stack when
performing code insertions (cf. 5.3.3). libmadras offers three different ways of
dealing with the stack:

• Keep: The stack pointer is not modified in any way. This mode is advised
for insertions into codes where the stack is not used, or for patching sessions
which will not involve code insertions. It can lead to crashes if used while
performing insertions into codes where the stack is used.

• Move: The stack is moved to an area of memory that has been added to the
file. This ensures that the stack used by the inserted code does not overlap
with existing memory areas. However, it is not supported in multi-threaded
mode, as the same area will be used for all threads. It can also lead to an
overflow if the inserted functions make a heavy use of the stack, as the size
reserved for the moved stack is limited (currently to 1 Mb).

• Shift: The stack is shift upward by a number of user-defined bytes, allowing to
skip the area used by the current stack while remaining thread-safe. As there
is currently no way to know the size of the current stack, this method may
still lead to errors in the patched file if the shift is not important enough. It
has been observed that a shift of 512 bytes is enough for all tested codes. This
mode is advised for most patching sessions involving function call insertions.

B.3.2 Data modification

The Madras patcher allows to insert a new global variable to the file, using the
madras_globalvar_new function. The inserted global variable can be accessed from
any place of the executable; as its address is fixed, it is not protected against multi-
thread access. An inserted global variable will be filled with zeroes by default. It
is possible to specify a value to initialise it. This is the standard behaviour when
inserting strings. It is possible to use either the address or the value of global
variables as parameters to inserted functions (see B.3.4.1) or operands to inserted
instructions (see B.3.4.2).

B.3. Patching functions 123

B.3.3 Libraries modification

It is possible to modify the list of dynamic libraries needed by an executable. The
name of a needed library can be changed using the madras_extlib_rename function.
This can be useful for instance when a needed dynamic library has been itself patched
and saved under a different name.

The dynamic library where is defined a function whose call is inserted (see
B.3.4.1) is automatically added to the list of needed libraries. The function
madras_extlib_add also allows to do that but it is not needed for dynamic libraries.
This function is intended to be used to insert static libraries to a file.

B.3.4 Code modification

The Madras patcher allows to insert calls to functions present in a file or defined
in a dynamic library, insert assembly code, and delete or modify instructions.

All modifications are performed in the order of ascending addresses. In case of
multiple modifications at the same address, the modifications will be performed in
the order into which their respective requests were made. It is also possible to choose
whether an insertion must be performed before or after the instruction present at
the given address.

The behaviour of the Madras patcher is undefined if an instruction is requested
to be deleted as well as modified. It is also not possible to modify an instruction
that is being added by the patcher.

All functions allowing to modify the code return a pointer to a modif_t structure
which represents the modification request and allows to add further options to it.

All modifications performing code insertions can be set at a null address. Those
modifications are intended to be used either when linked to another insertion (see
B.3.4.6) or as an “else” statement to an insertion with conditions (see B.3.4.7). An
error will be raised when committing modifications requests if some modifications
set at a null address are not found linked to another modification.

B.3.4.1 Inserting a function call

It is possible to insert a call to a function either defined in a dynamic or static
library file or already present in the executable, using the madras_fctcall_new
function. If no library name is provided, the Madras patcher will assume the
function is present in the executable, and will display an error if not found there.
Otherwise, the Madras patcher will use the library name to identify its type (static
or dynamic) and choose the type of insertion to perform. If the library where the
function is defined is static, it is necessary to also add all libraries defining the
symbols used in the library using madras_extlib_add. The patcher will return an
error if some symbols remain undefined.

When inserting a function call, the Madras patcher will automatically sur-
round the inserted call with the appropriate assembly instructions for saving
and restoring all registers, as well as aligning the stack pointer and saving the
current stack depending on the chosen method (as described in B.3.1). The
madras_fctcall_new_nowrap function allows to insert only the function call with-
out any such surrounding instructions. This function can be useful to reduce the
overhead of saving and restoring the context provided the user takes care of it (using
for instance madras_insnlist_add to save and restore only a subset of registers) or

124 Appendix B. Madras API

if the inserted function can not change the execution context or on the contrary if
it is the expected behaviour. 1

Both functions return a pointer to a modif_t structure, which contains all the
details on an insertion request. The pointer can be used to add parameters and
return value to the function call by invoking the madras_fctcall_add∗ functions.

An inserted function call can accept up to 6 parameters (additional parameters
will be ignored). Parameters are added to an existing function insertion via different
API functions depending on the parameter type. Those functions are:

• madras_fctcall_addparam_fromstr, for adding a valid assembly operand
from its string representation,

• madras_fctcall_addparam_frominsn, for adding an operand from another
instruction,

• madras_fctcall_addparam_imm, for adding an immediate (integer) operand,

• madras_fctcall_addparam_fromglobvar, for adding a global variable added
by the Madras patcher.

It is not possible to use an existing global variable as parameter.
In the current version, all parameters are passed as 64 bits integers, so an inserted

function can use either 64 bits integers or pointers as parameters.
An inserted function call can be set to return a value. This is done with function

madras_fctcall_addreturnval. The return value must be a global variable added
by the Madras patcher. Like the parameters, the return value is a 64 bits integer,
so it can be either treated as an integer or a pointer.

B.3.4.2 Inserting assembly instructions

It is possible to add assembly instructions either in string format using the function
madras_insnlist_add or as a queue of the structures used by Maqao to repre-
sent an assembly instruction (insn_t) using the function madras_add_insns. The
instructions will be added at the given address without any check nor addition of
wrapping instructions.

Instructions present in inserted lists can reference a global variable added by the
Madras patcher. An instruction referencing such a variable must use a memory
operand using the instruction pointer as base and a null displacement (0(%RIP)).
An array of pointers to the globvar_t structures describing the referenced global
variables must be passed as parameter to the function, with the pointers appearing
in the same order in the array as they appear in the instruction list. It is possible
for a pointer to appear more than once if the corresponding global variable is to be
referenced multiple times.

Instructions added using madras_insnlist_add must be passed as strings, all
written in upper case, and separated by carriage return “\n” characters. Such lists
can use labels, identified as followed by a colon character “:” and beginning a line,
to reference branch destinations. It is not possible to reference a label from the
patched file in an inserted list.

1madras_fctcall_new_nowrap is now deprecated, as the same result can be obtained using
madras_fctcall_new then madras_modif_addopt with the PATCHOPT_FCTCALL_NOWRAP flag.

B.3. Patching functions 125

B.3.4.3 Inserting a branch instruction

It is possible to insert an unconditional branch instruction using the function
madras_branch_insert. The branches added using this function can point either to
an existing instruction in the file, referenced by its address, or another modification
request (only insertions modification requests are currently supported). In the latter
case, the branch will point to the first instruction inserted by the modification.

It is also possible to choose whether the branch must be updated if a code inser-
tion is performed before its destination. The standard behaviour would be to update
the branch to point to the beginning of the inserted code, but an option allows to
override this behaviour to ensure the branch points to the original instruction.

B.3.4.4 Modifying an instruction

It is possible to modify an instruction at a given address using the function
madras_modify_insn. This function allows to change the mnemonic and/or some
or all operands of the instruction; it is also possible to remove or add operands.
Mnemonics and operands must be provided as strings identical to their assembly
representation, written in capital case.

A flag allows to choose the behaviour of the patcher when the modified instruc-
tion has a smaller coding than the original. In such a case, the Madras patcher can
pad the remaining space with nop instructions, which allows to avoid displacing the
area containing the modified instruction as is the standard behaviour. Otherwise,
the modified instruction will be displaced as it would if larger than the original.

There is no test on the validity of the requested modifications when performing
the request. If the modified instruction is invalid, an assembly error will be returned
when committing the changes.

B.3.4.5 Deleting instructions

It is possible to delete one or more instructions in the file using the function
madras_delete_insns. The instructions will be removed from the patched file.
All direct branch targets pointing to a deleted instruction will be updated to point
to the first remaining instruction immediately following the deleted ones.

The function madras_replace_insns allows to delete one or more instructions
and replace them with nop instructions to preserve the size of the program, thus elim-
inating the need to perform code displacement. Direct branch instructions pointing
to any replaced instruction are updated to point to the first instruction of the re-
placement block instead.

B.3.4.6 Linking modification requests

It is possible to link modification requests from one to another. This is only sup-
ported for modifications representing a insertion request (for code, function call,
branches, . . .). Linking a modification M’ to modification M will ensure that the
code of M’ is executed after the one of M.

• If the linked modification M’ has a non null address, an unconditional branch
will be added after the last instruction inserted by M, branching to the first
instruction inserted by M’.

126 Appendix B. Madras API

• If the linked modification M’ has a null address, the code that it should insert
will be directly appended to the code inserted by M.

B.3.4.7 Adding conditions on modification requests

It is possible to add conditions for the execution of the code generated by the
modification request when running the patched file. This is currently supported
only for modifications representing a insertion request.

A condition object must first be created using madras_cond_new. A condition
can be formed with either:

• A numerical value, an assembly operand represented as a Maqao oprnd_t
structure, and a comparison operator (<, =, ≤, . . .)

• Two other conditions and a logical operator (AND or OR).

It is thus possible to build a complex condition using multiple comparison of
operands and values. The current version does not support a comparison between
two assembly operands.

A condition object can be attached to an existing modification using the function
madras_modif_addcond. If another condition was already attached to this modi-
fication, the final condition attached to the modification will be formed by both
conditions and the specified logical operand (AND by default).

It is also possible to add a condition to a modification from its string repre-
sentation, using madras_modif_setcond_fromstr. The string representation of a
condition must obey a syntax close to the one used in C:

• All conditions are enclosed by brackets (“(” and “)”)

• A condition is formed by either of

– two conditions separated by a logical operator (“&&” or “||”)

– an assembly operand and a value separated by a comparison operator
(“==”, “!=”, “<”, “>”, “<=”, “>=”)

• Assembly operands used in conditions must be enclosed by quotes (”)

A modification to which a condition was added can also be affected an else
statement, using madras_modif_addelse. An else statement is an insertion modifi-
cation set at a null address (an error will be raised if it is not). The code inserted
by this modification will be executed if the condition is not met.

B.3.5 Patcher options

The madras_modifs_addopt function allows to tweak the behaviour of the patcher
for a whole patching session. The madras_modif_addopt offers the same function-
ality, but limited to a single modification request.

B.3.5.1 Options altering code displacement

It is possible to alter how the Madras patcher handles code displacement when
performing modifications that implies a change of size.

B.3. Patching functions 127

By default, the Madras patcher will not perform an insertion if there
is not enough space to insert a branch to the displaced code. The option
PATCHOPT_FORCEINS allows to force insertions even when there is not enough space
for the branch. For specific cases this can cause insertions to actually succeed be-
cause adjacent blocks are also moved, thus leaving enough space for the insertions.

By default, the Madras patcher moves basic blocks when inserting code, which
may lead to insertion failing when a basic block is too small for the insertion. The
PATCHOPT_MOVEFCTS option allows the Madras patcher to attempt moving whole
functions when such a case is encountered. This allows most patching operations
to succeed, but can lead to errors in the patched file if a function was incorrectly
detected or if indirect branches from other functions point inside the moved function,
which is often the case in OpenMP codes. Conversely, the PATCHOPT_MOV1INSN
option allows the Madras patcher to attempt moving only one instruction.

Those options may allow more patching operations to succeed by increasing the
risk of causing the patched executable to crash. The behaviour of the Madras
patcher is also not defined if those options are used on some but not all of the
modification requests in a same basic block.

B.3.5.2 Options altering branch updates

It is possible to alter how the Madras patcher handles the updates of branches to
instructions before which some code is added.

The default behaviour of the patcher is to update all branches
to an instruction to point to the first instruction of code in-
serted before it. The PATCHOPT_NO_UPD_EXTERNAL_BRANCHES and
PATCHOPT_NO_UPD_INTERNAL_BRANCHES options allow to restrict those updates
respectively to the branch instructions belonging to the same function as the
patched instruction and to a different function than the patched instruction.
The PATCHOPT_BRANCHINS_NO_UPD_DST concerns inserted branch instructions, and
prevents the branch to be updated if instructions are inserted before its destination.

B.3.6 Changing the padding instruction

By default, the instruction used to pad sections of code moved because of code
displacement is the shortest nop instruction available for the given architecture.
It is possible to set it to another instruction for a given modification using the
madras_modif_setpaddinginsn function or for the whole patching session using
the madras_modifs_setpaddinginsn function. The given instruction must have
the same length as the default padding instruction or an error will be raised.

B.3.7 Committing changes

A patching session is ended by committing the changes with the
madras_modifs_commit function, which performs all staged modifications and
generates a patched file with the requested name. It is advised not to use the same
name as the original. The operations are performed in the following order:

• Applying requests for renaming of dynamic libraries.

• Applying requests for addition of dynamic and static libraries.

• Applying requests for addition of global variables.

128 Appendix B. Madras API

• Applying all requests for code modification in the order of their addresses.

• Saving the patched file under the given name.

• Freeing the list of pending requests.

At this point the generated patched file contains all requested changes, except
for those that caused an error during patching. It is not advised to keep using the
Madras elfdis_t structure for other operations afterwards.

B.4 Logging

The libmadras API allows to record all requests performed on a disassembled file
and write them to a log file. By default, this feature is turned off and can be
activated using the madras_traceon function. It is also possible to choose the name
of the log file, by default madras_trace.log.

All invoked API functions will be recorded in the log, along with their param-
eters. A Madras script offers to turn such a file into a C source file, allowing to
compile it and rerun the requests.

B.5 Example of use of the Madras API

The code below presents an example of the use of the Madras API. It defines the
function insert, which allows to patch a file by inserting a function call at a given
address and save the patched file under a different name. The required parameters
are the name of the file to patch, the static or dynamic library defining the function
to insert (an empty string specifies that the function is defined in the patched file),
the name of the function to insert, the address at which it must be inserted, and
the name of the patched file. The main function displays an example of invocation
of this function.

#include <libmadras . h>
void i n s e r t (char∗ f i l e , char∗ l i b , char∗ f c t ,

int64_t addr , char∗ out) {
//Disassembles the f i l e and i n i t s the mod i f i c a t i on s
e l f d i s_ t ∗ madras = madras_disass_f i l e (f i l e) ;
madras_modifs_init (madras , STACK_SHIFT, 512) ;
//Adds a func t i on c a l l a t the g iven address
i n s e r t_t ∗ i f c t = madras_fctcall_new (madras , f c t , l i b , addr , 0) ;
//Adds the g iven address as an immediate parameter
madras_fctcall_addparam_imm(madras , i f c t , addr , 0) ;
//Commits changes and c r ea t e s patched f i l e
madras_modifs_commit (madras , out) ;
//Terminates the madras s t r u c t u r e
madras_terminate (madras) ;

}
void main (int argc , char∗ argv []) {

i n s e r t ("myf i l e " , " l i b f o o . so " , "myfunction" ,
0x400042 , "myf i l e−patched") ;

}

B.6. The madras executable 129

B.6 The madras executable

The madras executable is a standalone program allowing to use most of the features of the
API. In the case of patching, those are simplified and mainly intended for test or examples.
madras was used to perform the performance tests of the Madras disassembler whose
results are presented in Section 4.5. It is invoked through the following command line:

$ madras options filename

where filename is the path of a valid ELF file and options a set of flags controllingmadras
behaviour. madras accepts the following options:

• -d, --disassemble: Prints the disassembly of all code sections in the file

• -t, --disassemble-text: Prints the disassembly of the .text section of the file

• --shell-code: Prints the disassembly of all sections, with the hexadecimal encodings
of instructions in string format.

• --label=name : Prints instruction from the given label to the next one.

• --color-mem: Adds colors during printing: colors instructions performing memory
accesses in red and floating point instructions in blue.

• --color-jmp: Adds colors during printing: colors unsolved indirect branches in red,
solved indirect branches in green and other branches in blue.

• --no-coding: Does not print instruction codings.

• --get-external-fct: Gets external functions using ELF data.

• --get-dynamic-lib: Gets dynamic libraries using ELF data.

• --with-family: Adds instruction family during printing.

• --with-annotate: Adds instruction annotations during printing.

• --with-roles: Adds operand roles during printing.

• --with-debug: Prints debug information from the file (if available and retrieved)

• --no-debug: Does not attempt to retrieve debug information from the file.

• --count-insns: Prints the number of instructions in the file.

• --raw-disass arch : Raw disassembly: disassembles the whole content of the file
without parsing the ELF using architecture arch. The following filters can be used
to control the part of the binary file to disassemble:

– --raw-start offset : Starts disassembly after offset bytes (0 if not set).

– --raw-len len : Disassembles len bytes (whole file if not set or set to 0).
Ignored if raw-stop is used first.

– --raw-stop offset : Stops disassembly at offset bytes (whole file if not set or
set to 0). Ignored if raw-len is used first.

– --raw-first addr : Assigns address addr to the first disassembled instruction
(0 if not set).

• -e, --printelf: Prints all data retrieved from the ELF file. The following filters can
be used to print only a part of the ELF data:

– --elfhdr: Prints ELF header.

– --elfscn: Prints ELF section headers.

– --elfseg: Prints ELF program headers.

– --elfrel: Prints ELF relocation tables.

130 Appendix B. Madras API

– --elfdyn: Prints ELF dynamic tables.

– --elfsym: Prints ELF symbol tables.

– --elfver: Prints ELF version tables.

– --elf-code-areas: Prints the start, length and stop of consecutive sections
containing executable code in the file.

• --function=format : Inserts a function call. The function does not have any pa-
rameters. format is a string containing parameters used to insert the function. It
has the following structure:
fct ;[@address [@address...]][;library][;after|before][;wrap|no-wrap]

– fct is the name of the function to insert.

– address is the address at which the function call must be inserted. If not
specified, the function is inserted but not called.

– library is a dynamic library containing the function. If not specified, it is
assumed that fct name is an internal function.

– after|before can be used to choose if the function call must be inserted before
or after the instruction at address. before is the default choice.

– wrap|no-wrap can be used to choose if the context must be saved before the
function call and restored afterwards. wrap is the default choice.

• --delete=format : Deletes one or several instructions. The format parameter has
the following structure: @address [@address...][;number]

– address is the address of the first instruction to be deleted.

– number is the number of instructions to delete. If not specified, the default
value is 1. number must be a positive value.

• --stack-keep: Sets the method for safeguarding the stack to STACK_KEEP.

• --stack-move: Sets the method for safeguarding the stack to STACK_MOVE.

• --stack-shift=value : Sets the method for safeguarding the stack to STACK_SHIFT.
This is the default option, with 512 for value.

• --set-machine=value : For ELF binaries, changes to machine type for which it is
compiled in the ELF header to value.

• --check-file: Check that the file is a valid ELF executable, linkable or library file.

• -o, --output output : Saves the file to output. If no patching command has been
issued, the new file will be identical. If omitted while a patching command has been
issued, the result file will be filename _mdrs.

• -m, --mute: Disassembles but does not print anything.

• -h, --help: Prints the detailed options of madras.

• -v, --version: Displays the madras executable version.

Below are some examples of use of the madras executable:

• Disassembling binary file foo and printing debug data:

madras -d foo --debug-print

• Patching file foo to insert function bar from libfoo.so at address 0x400000, and
saving the result as foo-patch:

madras foo --function=bar;@0x400000;libfoo.so -o foo-patch

Bibliography

[1] AMD64 Architecture Programmer’s Manual Volume 1: Application Programming.
http://support.amd.com/us/Processor_TechDocs/. 8

[2] AMD64 Architecture Programmer’s Manual Volume 2: System Programming. http:
//support.amd.com/us/Processor_TechDocs/. 8

[3] AMD64 Architecture Programmer’s Manual Volume 3: General Purpose and System
Instructions. http://support.amd.com/us/Processor_TechDocs/. 8

[4] AMD64 Architecture Programmer’s Manual Volume 4: 128-bit and 256 bit media
instructions. http://support.amd.com/us/Processor_TechDocs/. 8

[5] AMD64 Architecture Programmer’s Manual Volume 5: 64-Bit Media and x87
Floating-Point Instructions. http://support.amd.com/us/Processor_TechDocs/.
8

[6] a.out – assembler and link editor output. cm.bell-labs.com/cm/cs/who/dmr/
man51.ps. 15

[7] ARM Architecture Reference Manual. https://silver.arm.com/download/ARM_
and_AMBA_Architecture/. 11

[8] ARM Software Development Toolkit. http://infocenter.arm.com/help/topic/
com.arm.doc.dui0041c/DUI0041C.pdf. 17

[9] ARM R©Architecture Reference Manual ARMv7-A and ARMv7-R edition. https:
//silver.arm.com/download/ARM_and_AMBA_Architecture/. 11

[10] ARM R©v7-M Architecture Reference Manual. https://silver.arm.com/download/
ARM_and_AMBA_Architecture/. 11

[11] ARMv6-M Architecture Reference Manual. https://silver.arm.com/download/
ARM_and_AMBA_Architecture/. 11

[12] ARMv8 Instruction Set Overview. https://silver.arm.com/download/ARM_and_
AMBA_Architecture/. 11

[13] Common Object File Format. http://www.ti.com/lit/an/spraao8/spraao8.pdf.
16

[14] Executable and Linkable Format (ELF). http://www.skyfree.org/linux/
references/ELF_Format.pdf. ix, 14

[15] GNU gprof. In GNU Binary Utilities. Free Software Foundation, Inc. 76

[16] IDAPro Disassembler. Hex-Rays. https://www.hex-rays.com. 54, 80

[17] Intel R©64 and IA-32 Architectures Software Developer’s Manual Combined Volumes
2A, 2B, and 2C: Instruction Set Reference, A-Z. http://download.intel.com/
products/processor/manual/. 8

[18] Intel R©64 and IA-32 Architectures Software Developer’s Manual Combined Volumes
3A, 3B, and 3C: System Programming Guide, Parts 1 and 2. http://download.
intel.com/products/processor/manual/. 8

[19] Intel R©64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic
Architecture. http://download.intel.com/products/processor/manual/. 8

[20] Intel R©Itanium R©Architecture Software Developer’s Man-
ual. http://www.intel.com/content/dam/doc/manual/
itanium-architecture-vol-1-2-3-4-reference-set-manual.pdf. 10

http://support.amd.com/us/Processor_TechDocs/
http://support.amd.com/us/Processor_TechDocs/
http://support.amd.com/us/Processor_TechDocs/
http://support.amd.com/us/Processor_TechDocs/
http://support.amd.com/us/Processor_TechDocs/
http://support.amd.com/us/Processor_TechDocs/
cm.bell-labs.com/cm/cs/who/dmr/man51.ps
cm.bell-labs.com/cm/cs/who/dmr/man51.ps
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0041c/DUI0041C.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0041c/DUI0041C.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
https://silver.arm.com/download/ARM_and_AMBA_Architecture/
http://www.ti.com/lit/an/spraao8/spraao8.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://www.hex-rays.com
http://download.intel.com/products/processor/manual/
http://download.intel.com/products/processor/manual/
http://download.intel.com/products/processor/manual/
http://download.intel.com/products/processor/manual/
http://download.intel.com/products/processor/manual/
http://www.intel.com/content/dam/doc/manual/itanium-architecture-vol-1-2-3-4-reference-set-manual.pdf
http://www.intel.com/content/dam/doc/manual/itanium-architecture-vol-1-2-3-4-reference-set-manual.pdf

132 Bibliography

[21] Intel R©Xeon PhiTMCoprocessor Instruction Set Architecture Reference Manual.
http://download-software.intel.com/sites/default/files/forum/278102/
327364001en.pdf. 9

[22] Intel R©Xeon PhiTMCoprocessor System Software Developers Guide. http:
//www.intel.com/content/dam/www/public/us/en/documents/product-briefs/
xeon-phi-software-developers-guide.pdf. 9

[23] MAQAO: Modular Assembly Quality Analyser and Optimizer. http://www.maqao.
org. 61

[24] Microsoft Portable Executable and Common Object File Format Specification. www.
skyfree.org/linux/references/coff.pdf. 16

[25] Mont-Blanc: European approach toward energy efficient high performance. http:
//www.montblanc-project.eu/home. 11

[26] Ndisasm. In NASM Documentation. The NASM team. http://www.nasm.us/xdoc/
2.10.07/html/nasmdoca.html. 52

[27] Objdump. In GNU Binary Utilities. Free Software Foundation, Inc. http://
sourceware.org/binutils/docs/binutils/objdump.htm. 51

[28] OS X ABI Mach-O File Format Reference. 17

[29] Power ISATMVersion 2.06 Revision B. https://www.power.org/documentation/.
11

[30] Standard performance evaluation corporation. http://www.spec.org/. 61

[31] The DWARF Debugging Standard. dwarfstd.org/. 15

[32] XCOFF Object File Format. http://publib.boulder.ibm.com/infocenter/
pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.
htm. 16

[33] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: A New Kernel Foundation for UNIX Development. pages 93–112, 1986. 17

[34] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. HPCTOOLKIT: Tools for performance analysis of optimized parallel
programs, 2008. 5

[35] V. Agel, L. Eichinger, H.-W. Eroms, P. Hellwig, H.-J. Heringer, and H. Lobin. Parsing
with dependency grammars. 21

[36] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
& Tools. Addison Wesley, 2007. 27

[37] K. An, A. Kotha, M. Smithson, R. Barua, and A. D. Retrofitting security in cots
software with binary rewriting. 79

[38] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and R. Barua.
A compiler-level intermediate representation based binary analysis and rewriting sys-
tem. In Proceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 295–308, New York, NY, USA, 2013. ACM. 79

[39] D. Barthou, A. Charif Rubial, W. Jalby, S. Koliaï, and C. Valensi. Performance Tun-
ing of x86 OpenMP Codes with MAQAO. In M. S. Muller, M. M. Resch, A. Schulz,
and W. E. Nagel, editors, Tools for High Performance Computing 2009, pages 95–113.
Springer Berlin Heidelberg, 2010. 58, 89

[40] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In
Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools, PASTE ’11, pages 9–16, New York, NY, USA, 2011. ACM. 53, 78

http://download-software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://download-software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-software-developers-guide.pdf
http://www.maqao.org
http://www.maqao.org
www.skyfree.org/linux/references/coff.pdf
www.skyfree.org/linux/references/coff.pdf
http://www.montblanc-project.eu/home
http://www.montblanc-project.eu/home
http://www.nasm.us/xdoc/2.10.07/html/nasmdoca.html
http://www.nasm.us/xdoc/2.10.07/html/nasmdoca.html
http://sourceware.org/binutils/docs/binutils/objdump.htm
http://sourceware.org/binutils/docs/binutils/objdump.htm
https://www.power.org/documentation/
http://www.spec.org/
dwarfstd.org/
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.files/doc/aixfiles/XCOFF.htm

Bibliography 133

[41] Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching.
The International Journal of High Performance Computing Applications, 14:317–329,
2000. 5, 53, 78

[42] D. Chanet and L. V. Put. Compacting Arm Binaries with the Diablo Framework,
2003. 79

[43] A. S. Charif-Rubial, D. Barthou, C. Valensi, S. S. Shende, A. D. Malony, and i.-p.
William Jalby. MIL: A language to build program analysis tools through static bi-
nary instrumentation. In 20th Annual International Conference on High Performance
Computing (HiPC’13), Hyderabad, India, Dec. 2013. xi, 89, 90

[44] M. Charney. XED. Intel Corporation. http://software.intel.com/sites/
landingpage/pintool/docs/58423/Xed/html/. 52

[45] V. Chipounov and G. Candea. Enabling sophisticated analyses of x86 binaries with
revgen. 54

[46] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis. Thread-safe dynamic binary
translation using transactional memory. 80

[47] C. Cifuentes and M. V. Emmerik. Recovery of Jump Table Case Statements from
Binary Code. In Science of Computer Programming, pages 2–3, 1999. 47

[48] C. Cifuentes, M. V. Emmerik, N. Ramsey, and B. Lewis. Experience in the Design,
Implementation and Use of a Retargetable Static Binary Translation Framework.
Technical report, 2002. 53

[49] G. Dabah. Distorm. http://code.google.com/p/distorm/. 52

[50] N. K. Dahra. Disassembly and parsing support for retargetable tools using sim-nml,
2007. 22

[51] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and K. De Bosschere. Link-time
optimization of ARM binaries. In Proceedings of the 2004 ACM SIGPLAN/SIGBED
conference on Languages, compilers, and tools for embedded systems, LCTES ’04,
pages 211–220, New York, NY, USA, 2004. ACM. 79

[52] B. D. de Dinechin. A machine description system. 22

[53] A. Desnos, S. Roy, and J. Vanegue. ERESI : une plate-forme d’analyse binaire au
niveau noyau, 2008. 80

[54] T. G. developers. GDB: The GNU Project Debugger. Free Software Foundation, Inc.
http://sourceware.org/gdb/. 52

[55] N. A. S. Division. Nas parallel benchmarks. http://www.nas.nasa.gov/
publications/npb.html. 89

[56] A. Fauth, J. V. Praet, and M. Freericks. Describing instruction set processors using
nml. In in Proceedings of the Conference on Design, Automation and Test in Europe,
pages 503–507, 1995. 22

[57] A. Fog. Objconv. http://www.agner.org/optimize/objconv-instructions.pdf.
54

[58] A. Fog. Calling conventions for different C++ compilers and operating systems, 2008.
13

[59] B. Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time. 20, 40

[60] B. Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foundation.
In Symposium on Principles of Programming Languages, pages 111–122. ACM Press,
2004. 20

[61] M. Freericks. The nml machine description formalism. 22

http://software.intel.com/sites/landingpage/pintool/docs/58423/Xed/html/
http://software.intel.com/sites/landingpage/pintool/docs/58423/Xed/html/
http://code.google.com/p/distorm/
http://sourceware.org/gdb/
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.agner.org/optimize/objconv-instructions.pdf

134 Bibliography

[62] M. Gerndt and S. Strohhäcker. Distribution of Periscope Analysis Agents on ALTIX
4700. 77

[63] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a Call Graph Execution
Profiler, 1982. 76

[64] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An Instruction Set Description
Language for Retargetability, 1997. 22

[65] D. Kästner. TDL - A Hardware and Assembly Description Language, 2000. 54

[66] M. Kerrisk. PTRACE(2), 2013. man7.org/linux/man-pages/man2/ptrace.2.html.
76

[67] C. keung Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Janapa, and R. K. Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In In PLDI ’05: Proceedings of the 2005 ACM SIG-
PLAN conference on Programming language design and implementation, pages 190–
200. ACM Press, 2005. 5, 78, 80

[68] S. Koliaï, Z. Bendifallah, M. Tribalat, C. Valensi, J.-T. Acquaviva, and W. Jalby.
Quantifying performance bottleneck cost through differential analysis. In Proceedings
of the 27th international ACM conference on International conference on supercom-
puting, ICS ’13, pages 263–272, New York, NY, USA, 2013. ACM. 90

[69] J. R. Larus and T. Ball. Rewriting Executable Files to Measure Program Behavior.
SOFTWARE PRACTICE & EXPERIENCE, 24:197–218, 1994. 77

[70] C. Lattner and V. Adve. Architecture for a Next-Generation GCC. In Proc. First
Annual GCC Developers’ Summit, Ottawa, Canada, May 2003. 22

[71] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis
& transformation, 2004. 22, 52, 54, 79

[72] J. Levine, T. Mason, and D. Brown. Lex & Yacc. Computer Science Series. O’Reilly
& Associates, 1992. http://books.google.fr/books?id=YrzpxNYegEkC. 22

[73] S. Li. A Survey on Tools for Binary Code Analysis, 2004. 49

[74] C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance to
Static Disassembly. In IN ACM CONFERENCE ON COMPUTER AND COMMU-
NICATIONS SECURITY (CCS, pages 290–299. ACM Press, 2003. 46, 47

[75] C. Linn, S. Debray, G. Andrews, and B. Schwarz. Stack Analysis of x86 Executables.
74

[76] H. Lu. ELF: From The Programmer’s Perspective. NYNEX Science & Technology
Inc, page 95, 1995. 14

[77] D. D. McCracken and E. D. Reilly. Backus-Naur form (BNF). In Encyclopedia
of Computer Science, pages 129–131. John Wiley and Sons Ltd., Chichester, UK.
http://dl.acm.org/citation.cfm?id=1074100.1074155. 38

[78] J. Mellor-crummey, R. Fowler, and G. Marin. HPCView: A tool for top-down analysis
of node performance. The Journal of Supercomputing, 23:2002, 2002. 5

[79] Michael A. Laurenzano and Mustafa M. Tikir and Laura Carrington and Allan
Snavely. PEBIL: Efficient Static Binary Instrumentation for Linux. 53, 78

[80] B. P. Miller and K. A. Roundy. Binary-Code Obfuscations in Prevalent Packer Tools.
ACM Computing Surveys, June 2012. 48

[81] B. P. M. Nathan E. Rosenblum, X. (Jerry) Zhu and K. Hunt. Learning to Analyze
Binary Computer Code, 2008. 46, 53

[82] N. Nethercote and J. Seward. Valgrind: A program supervision framework. In In
Third Workshop on Runtime Verification (RV’03, 2003. 79

man7.org/linux/man-pages/man2/ptrace.2.html
http://books.google.fr/books?id=YrzpxNYegEkC
http://dl.acm.org/citation.cfm?id=1074100.1074155

Bibliography 135

[83] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In In Proceedings of the 2007 Programming Language Design and
Implementation Conference, 2007. 79

[84] M. Pietrek. An In-Depth Look into the Win32 Portable Executable File Format.
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx. 16

[85] V. Rajesh and R. Moona. Processor modeling for hardware software codesign. In in
Int. Conf. on VLSI Design, pages 132–137, 2000. 22

[86] N. Ramsey and M. F. Fernández. Specifying Representations of Machine Instruc-
tions. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYS-
TEMS, 19:492–524, 1997. 21

[87] T. Reps, G. Balakrishnan, J. Lim, and T. Teitelbaum. A Next-Generation Platform
for Analyzing Executables. In In APLAS, pages 212–229, 2005. 54

[88] E. Rohou, F. Bodin, A. Seznec, G. L. Fol, F. Charot, and F. Raimbault. Salto:
System for assembly-language transformation and optimization, 1996. 22

[89] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and
B. Chen. Instrumentation and Optimization of Win32/Intel Executables Using Etch.
In In Proceedings of the USENIX Windows NT Workshop, pages 1–7, 1997. 80

[90] L. Ryzhyk. The ARM Architecture, 2006. 11

[91] B. Schwarz, S. Debray, and G. Andrews. Disassembly of Executable Code Revisited.
In In Proc. IEEE 2002 Working Conference on Reverse Engineering (WCRE, pages
45–54. IEEE Computer Society, 2002. 49

[92] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. PLTO: A Link-Time Optimizer
for the Intel IA-32 Architecture. In In Proc. 2001 Workshop on Binary Translation
(WBT-2001), 2001. 53, 81

[93] A. Sepp, J. Kranz, and A. Simon. GDSL: A Generic Decoder Specification Language
for Interpreting Machine Language. Electron. Notes Theor. Comput. Sci., 289:53–64,
Dec. 2012. 21

[94] S. S. Shende and A. D. Malony. The Tau Parallel Performance System. The Inter-
national Journal of High Performance Computing Applications, 20:287–331, 2006. 5,
89

[95] T. G. team. GCC, the GNU Compiler Collection. Free Software Foundation, Inc.
http://http://gcc.gnu.org/. 22

[96] V. Thampi. Udis86. http://udis86.sourceforge.net/. 52

[97] H. Theiling, U. D. Saarlandes, and A. A. I. Gmbh. Extracting Safe and Precise
Control Flow from Binaries. In In Proc. 7th Conference on Real-Time Computing
Systems and Applications, 2000. 54

[98] W. Underwood. Grammar-Based Specification and Parsing of Binary File Formats.
The International Journal of Digital Curation, pages 95–106, 2012. 20

[99] D. A. Varley. Practical Experience Of The Limitations Of Gprof, 1993. 76

[100] L. Ďurfina, J. Křoustek, P. Zemek, D. Kolář, T. Hruška, K. Masařík, and A. Meduna.
Design of an Automatically Generated Retargetable Decompiler. In 2nd European
Conference of COMPUTER SCIENCE (ECCS’11), pages 199–204. North Atlantic
University Union, 2011. 54

[101] D. W. Wall. Systems for Late Code Modification. In WRL Research Report 91/5,
pages 275–293. Springer-Verlag, 1991. 76

http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://http://gcc.gnu.org/
http://udis86.sourceforge.net/

136 Bibliography

[102] C. Wang, S. Hu, H.-s. Kim, S. R. Nair, M. Breternitz, Z. Ying, and Y. Wu. Stardbt:
An efficient multi-platform dynamic binary translation system. In Proceedings of
the 12th Asia-Pacific Conference on Advances in Computer Systems Architecture,
ACSAC’07, pages 4–15, Berlin, Heidelberg, 2007. Springer-Verlag. 80

[103] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Securing untrusted code via
compiler-agnostic binary rewriting. In In Proceedings of the 28th Annual Computer
Security Applications Conference (ACSAC, 2012. 80

[104] W. A. Woods. Transition network grammars for natural language analysis. 21

Bibliography 137

	Introduction
	Contribution
	Organisation

	Elements of binary analysis
	Analysis tools
	Common operations
	Additional constraints
	Operating at the binary level

	Assembly language
	Binary encoding
	Execution
	Addressing
	Overview of different architectures

	Binary executable
	General structure
	Contents
	Common binary formats

	Generation of a generic binary decoder and encoder
	Parsers and architecture representation
	Parsers
	Related work

	Parsing challenges
	Constraints on grammar
	Architecture specific challenges
	Additional information

	Representation using a grammar formalism
	Concepts
	FSA building algorithm
	Parsing algorithm
	Extended FSA building algorithm

	Minjag
	Specificities of the Intel architectures
	Specificities of the ARM architectures
	Assembler generation
	Grammar checks and debugging
	Exhaustive tests of architecture representation

	Conclusion

	Disassembly of binary files
	Disassembly challenges
	Interleaved foreign bytes
	Obfuscated code
	Self rewriting code
	Overlapping instructions
	Output format

	Disassembling principles and related work
	Disassembly methods
	Existing disassemblers

	Performing disassembly
	Disassembly errors
	Disassembler output

	Madras disassembler
	Inner workings
	Parallel disassembly
	Use in Maqao

	Disassembler performance
	Testing context
	Disassembly speed
	Accuracy

	Conclusion

	Patching executables
	Challenges of patching
	Preservation of the control flow
	Preservation of the data context
	Handling dependencies of inserted code

	Methods and tools for instrumentation
	Compiler-based instrumentation
	Dynamic patching
	Simulation
	Code displacement
	Patching tools

	Binary rewriting using code displacement
	Conventions
	Code displacement
	Preserving the data environment

	The Madras patcher
	Main features
	Customisable behaviour
	Inner workings
	Limitations
	Use in Maqao
	Use by Decan

	Conclusion

	Extensions for Madras and Minjag
	Optimising disassembly performance
	Optimising disassembly speed
	Optimising disassembly accuracy

	New architectures
	Handling multiple instruction sets in a file
	Other architectures

	Patcher extensions
	Consequences of improved disassembly accuracy
	Increasing performance
	Decorrelation of the patching process

	Conclusion

	Conclusion
	Contributions
	Future works
	Implementing extensions
	Future research

	Minjag developer documentation
	Description
	Using minjag
	Grammar format
	Outline
	Begin and end code sections
	Declarations section
	Symbols definitions

	Source file generation
	Outline
	Generation of the architecture definition
	Handling files with macro definitions
	Generation of the FSM structures
	Generation of the list of post-parsing macros
	Generation of the list of semantic action macros
	Generation of the list of encoding macros
	Generation of the encoding structures
	Generation of the symbols list

	Implementing a new architecture
	Building the headers from the .def files

	Madras API
	libmadras structures
	Disassembling functions
	Patching functions
	Patcher initialisation
	Data modification
	Libraries modification
	Code modification
	Patcher options
	Changing the padding instruction
	Committing changes

	Logging
	Example of use of the Madras API
	The madras executable

	Bibliography

