PhD Defense

Optimisation de code base sur des transformations source-a-source guides par des mtriques issues de profilages

Youenn Lebras

Advisor : William Jalby Co-supervisor : Andres S. Charif-Rubial

3 July 2019

Background •000000000 Introduction ASSIST ooooooooooooo Issues & Limitations

Experiments

Conclusion

Computer Architecture Evolution

Recent evolution: a new hope ?

- The performance model shifted from high frequency single core processors to multitasking high-core-count parallel architectures
- Larger vector lengths (AVX-512) & automatic vectorization
- Specialized ports (i.e. FMA)
- New kind of memory (i.e. HBM, Optane)

ASSIST 0000000000000 Issues & Limitations

Experiments

Conclusion

Introduction

With great evolution comes great difficulties

- Increasing number of different architectures
- Additional optimization challenges related to parallelism
- Performance issues are heavily tied to increased vector lengths and advanced memory hierarchy
- The optimization process remains key to maintain a reasonable performance level on modern micro-processor architecture
- Optimizing code has become an art
- Harder and harder to optimize and maintain manually
- Time consuming and error-prone

Backgroun 00●0000		ASSIST 000000000000		sues & Limitations	Experiments 000000000000	Conclusion
Introductio	n					
Moti	vating	Example				
	j = 1.m		1 2 3 4 5 6 7 8 9 10	$ \begin{array}{c} \text{DO} \ lt_var_j = 1, n\\ \text{DO} \ j = lt_var_j, \\ \text{DO} \ lt_var_i = 1\\ \text{DO} \ i = lt_var_ \\ res = res+a(j\\ \text{END} \ \text{DO} \\ \text{END} \ \text{DO} \end{array} $	i D. n .GT. 100) THEN m, 8 min(m,lt_var_j + 8 i, min(n,lt_var_i +	*
2 DC 3 4 EN	i = 1, n	es+a(j,i)*b(j,i)	11 12 13 14	END DO END DO ELSE IF (n .EQ. 4) DO $j = 1,m$		

16

18

19

20

 22

23

 24

25

6

```
END DO

END DO

ELSE IF (n .EQ. 4) THEN

DO j = 1,m

res = res+a(j,1)*b(j,1)

res = res+a(j,2)*b(j,2)

res = res+a(j,3)*b(j,3)

res = res+a(j,4)*b(j,4)

END DO

ELSE

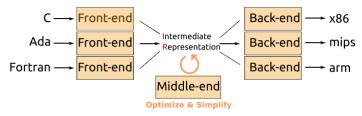
DO j = 1,m

DO i = 1,n

res = res+a(j,i)*b(j,i)

END DO

END DO
```

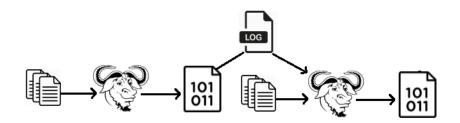

Background ○○○●○○○○○○	ASSIST	Issues & Limitations	Experiments 0000000000000	Conclusion
Goals				
Goals				

Key idea: Performance analysis tools (e.g. Scalasca, MAQAO, Tau) are pretty good at identifying some specific problems, we need to go further and fix automatically performance issues.

Automatic Source-to-Source assISTant: ASSIST

- Source code transformation framework
- Transformation driven framework: ideally detect whether a transformation is beneficial or not
- Exploiting performance analysis tools metrics
- Open to user advice
- Keep a maintainable code

Compiler task


- Transform a human readable file into a computer readable one
- Optimizing an application for a target architecture
 - Evaluating if a sequence of transformations is optimal
 - Predicting the behavior of a multi-core processor which has complex pipelines, multiple functional units, complex memory hierarchy, hardware data prefetching, etc
 - Profile Guided Optimization / Feedback-Directed Optimization

nclusion

Profile Guided Optimization (PGO)

3 steps

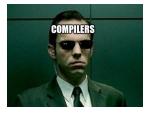
- Producing an instrumented binary
- Executing the binary in order to obtain a profile (feedback data)
- Using the obtained feedback data to produce a new version that is expected to be more efficient

PGO

ASSIST 0000000000000 Issues & Limitations

Experiments 00000000000 Conclusion

Profile Guided Optimization (PGO)


What is done (Intel PGO)

- Value profiling of indirect and virtual function calls
- Intermediate language (IR) is annotated with edge frequencies and block counts to guide optimization decisions
- Grouping hot/cold functions

Background ○○○○○○○○○○	ASSIST 000000000000	Issues & Limitations	Experiments 0000000000000	Conclusion
PGO				
Compilars	Limitations			

Main Limitations

- Remain conservative (static performance cost model & heuristics)
- PGO lacks information gathered and transformations
- Black box
- Can ignore user directives
- Searching the best sequence of transformations remains too complex

"Never send a human to do a machine job" -Agent Smith

Background ○○○○○○○○○	ASSIST 00000000000	Issues & Limitations	Experiments 000000000000	Conclusion
PGO				

Performance Analysis Tool

What are they?

Can be classified into two types :

- Static: estimate different issues and controle the code quality
- Dynamic: find what happened during the execution

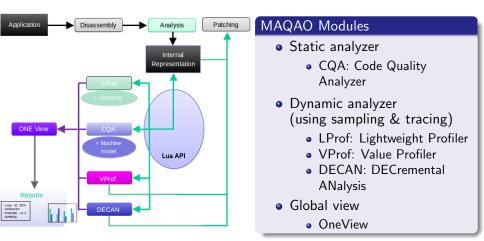
What are they for?

- Analyze & profile sequential/parallel codes
- Detect hotspots & performance issues / bottlenecks
- Provide hints on how to improve the code

Background ○○○○○○○○●	ASSIST 00000000000	Issues & Limitations	Experiments 000000000000	Conclusion
Contributions				
Contributio	ons			

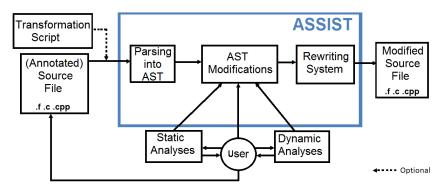
- A novel study of how and when well-known transformations allow to gain on real-world HPC applications using a novel FDO source-to-source approach
- A novel semi-automatic and user controllable method with a system open to user advices
- An FDO tool combining both dynamic and static analysis information to guide code optimization
- A more flexible alternative to compilers PGO / FDO modes
- A verification system to check if our transformations do not have a negative impact on performances

Background 000000000	ASSIST	Issues & Limitations	Experiments 0000000000000	Conclusion
Outline				


2 ASSIST

- MAQAO
- Design & Implementation
- Supported Transformations
- How to Trigger Transformations
- Assessing Transformation Verification

Issues & Limitations


Experiments

Background 000000000	ASSIST •oooooooooooooooooooooooooooooooooooo	Issues & Limitations	Experiments 0000000000000	Conclusion
MAQAO				
ΜΑΩΑΟ				

Automatic Source-to-Source assISTant (ASSIST):

ASSIST

Issues & Limitations

Experiments

Conclusion

Design & Implementation

Automatic Source-to-Source assISTant (ASSIST)

Technical Design

- Based on the Rose Compiler Project
- Support of Fortran 77, 90, 95, 2003 / C / C++03
- Same language at input and output
- Aiming at be easy to use with a simple user interface
- Targeting different kind of users
- Integrated as a MAQAO Module

ASSIST

Issues & Limitations

Experiments

Conclusion

Supported Transformations

Supported Transformations

Different types of transformations

AST Modifier

- Unroll
- Full Unroll
- Interchange
- Tile
- Strip Mine
- Loop/function Specialization

Directive(s) insertion

Mix of both

• Short Vectorization (SVT)

Background 0000000000	ASSIST ○○○○●○○○○○○	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transform	nations			
Zoom on	I CT			

Loop count Transformation - Type : Directives insertion

- Loop count knowledge enables to guide compiler optimizations choices
- Compilers cannot always guess the loop trip count at compile time
- Simplify
 - Control flow (less loop versions)
 - Choice of vectorization/unrolling
- Requires dynamic feedback (VPROF)
- Limitations
 - Loop bounds are dataset dependent
 - Only for Intel Compiler; unfortunately, other compilers do not offer such capability

Background	

ASSIST

Issues & Limitations

Experiments

Conclusion

Supported Transformations

Zoom on SVT

Short Vectorization Transformation - Type : Mix AST modifier and directive insertion

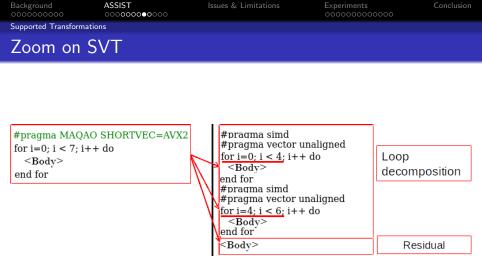
- Compilers may refuse to vectorize a loop with too few iterations
- Performing a loop decomposition
- Increasing the vectorization ratio by:
 - Forcing the vectorization (SIMD Directive)
 - Avoiding dynamic or static loop peeling transformation (UNALIGNED Directive)

Background

ASSIST

Issues & Limitations

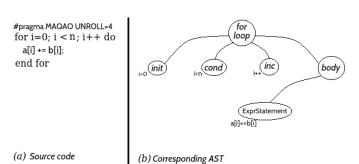
Experiments

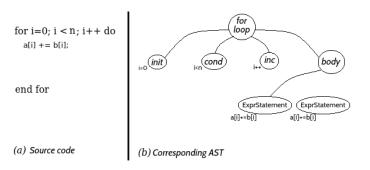

Conclusion

Supported Transformations

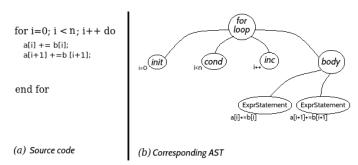
Zoom on SVT

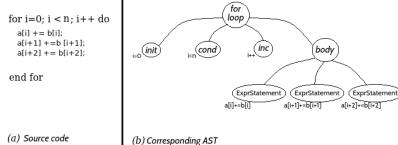
(a) Before Short Vectorization

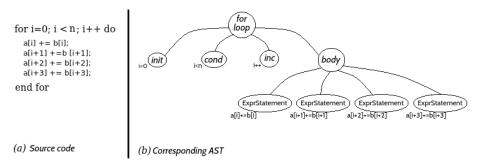

(b) After Short Vectorization


(a) Before Short Vectorization

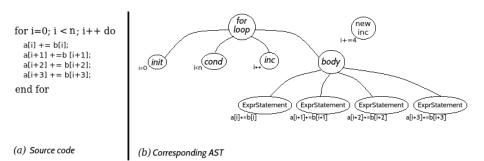
(b) After Short Vectorization


Background 0000000000	ASSIST 0000000000000	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transform	nations			
Transform	nation Examp	e		

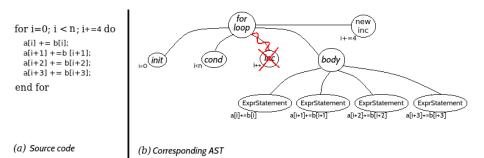

Background 0000000000	ASSIST ○○○○○○○○●○○○	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transform	nations			
Transform	nation Examp	le		


Background 0000000000	ASSIST ○○○○○○○○●○○○	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transform	nations			
Transform	nation Examp	e		

Background 0000000000	ASSIST ○○○○○○○○●○○○	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transform	nations			
Transforn	nation Examp	le		

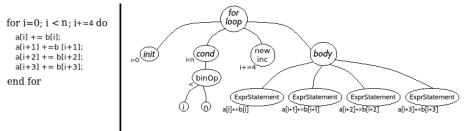


Background 0000000000	ASSIST ○○○○○○○○●○○○	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transform	nations			
Transforn	nation Examp	le		


Background 000000000	ASSIST ○○○○○○○○●○○○	Issues & Limitations	Experiments 000000000000	Conclusion
Supported Transformati	ons			

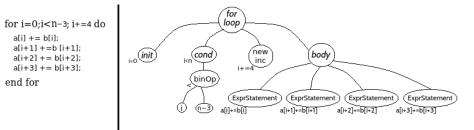
Transformation Example

Background 0000000000	ASSIST 00000000000000	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transfo	ormations			
	· · · · · · · · · · · · · · · · · · ·			


Transformation Example

27 / 57

Background 0000000000	ASSIST ○○○○○○○●○○○	Issues & Limitations	Experiments 0000000000000	Conclusion
Supported Transf	ormations			
T C		- 1		



(a) Source code

(b) Corresponding AST

Backgroun 0000000		ASSIS	T ⊃00000000	ues & Limitations	Experiments 0000000000000	Conclusion
Supported	Transformation	ons				
	~					

Transformation Example

(a) Source code

(b) Corresponding AST

ASSIST

Issues & Limitations

Experiments

Conclusion

How to Trigger Transformations

How to Trigger Transformations

3-ways

- Insert directives in sources
- Provide a transformation script
- Use OneView report
 - SVT => CQA (vectorization ratio) + VPROF (iteration count)
 - Tiling => DECAN (DL1)
 - Loop count => VProf (Iteration count)

```
!DIR$ MAQAO UNROLL=4!DIR$ MAQAO FULLUNROLL!DIR$ MAQAO INTERCHANGE=1,2!DIR$ MAQAO TILE=5
```

```
!DIR$ MAQAO SPECIALIZATION(a=5, b={1,10}, c<50)
```

ASSIST

Issues & Limitations

Experiments

Conclusion

How to Trigger Transformations

How to Trigger Transformations

3-ways

- Insert directives in sources
- Provide a transformation script
- Use OneView report
 - SVT => CQA (vectorization ratio) + VPROF (iteration count)
 - Tiling => DECAN (DL1)
 - Loop count => VProf (Iteration count)

```
loops = {
  { line = 26, transformation = {"TILE=5"}},
  { line = 34, transformation = {"UNROLL=8"}},
  { label = "LOOPLABEL1", transformation = {"INTERCHANGE=1,2"}}
}
```

ASSIST

Issues & Limitations

Experiments

Conclusion

How to Trigger Transformations

How to Trigger Transformations

3-ways

- Insert directives in sources
- Provide a transformation script
- Use OneView report
 - SVT => CQA (vectorization ratio) + VPROF (iteration count)
 - Tiling => DECAN (DL1)
 - Loop count => VProf (Iteration count)

```
loop_id = 5,
lineStart = 5,
lineStop = 7,
file = "codelet.c",
ite_min = 1000000,
ite_max = 1000000,
ite_avg = 1000000,
```

```
r_l1_min = 2.361754348463,
r_l1_max = 2.0752602660095,
r_l1_med = 2.3972978247604,
vecRatio = 12.5,
```

ASSIST

Issues & Limitations

Experiments

Conclusion

Assessing Transformation Verification

Assessing Transformation Verification

Process

- Step 1: Execute ONEVIEW on the Nth version.
- Step 2: Use analysis info to apply transformation on the N^{th} version
- Step 3: Compare global metrics and CQA, DECAN and VPROF metrics between *N*th and *N* + 1th.

ASSIST

Issues & Limitations

Experiments

Conclusion

Assessing Transformation Verification

Assessing Transformation Verification

GLOBAL METRICS	BEFORE TRANSFO	AFTER TRANSFO	IS BETTER ?
Total Time (s) : Flow Complexity : Array Access Efficiency (%) :	2.34 1 71.95	1 1 54.66	lower is better higher is better
Speedup if clean : Nb loops to get 80% if clean :	1 1	1.04 1	lower is better lower is better
Speedup if FP Vectorised : Nb loops to get 80% if FP vectorized :	1 1	1.47 1	lower is better lower is better
Speedup if Fully Vectorised : Nb loops to get 80% if Fully vectorized :	1.66 3	<u>1.87</u> 2	lower is better lower is better
Speedup if data in L1 Cache : Nb loops to get 80% if data in L1 Cache :	1 0	1.18 2	lower is better lower is better
Compilation Options :	ок	ОК	
Loop lines :	314 - 314	881-884	
Loop_id :	74	246	
Speedup if clean : Speedup if fully vectorized :	1.00 1.62	1.06	lower is better lower is better
Bottlenecks : Unroll confidence level : Cycles L1 if fully vec : Vector-efficiency ratio all : Vectorization ratio all : FP op per cycle L1 :	p5 max 13 85.71 67.86 2.46,	P0,01 max 8.00 2.06 42.00 68.00 3.76	higher is better higher is better higher is better higher is better higher is better

Background 000000000	ASSIST	Issues & Limitations	Experiments 0000000000000	Conclusion
Outline				

2 ASSIST

3 Issues & Limitations

4 Experiments

5 Conclusion

Background 0000000000	ASSIST 000000000000	Issues & Limitations	Experiments 000000000000	Conclusion
lssues &	Limitations			

Analysis

- Debug information accuracy
- What information to collect while limiting the overhead

	mitationa		
Issues & Li	mitations		

Analysis

- Debug information accuracy
- What information to collect while limiting the overhead

Transformations

- Rose frontend/backend issues on Fortran/C++
- How to match the right transformation with collected metrics
- Compiler can ignore a transformation
- Directives are often compiler dependent

Background 0000000000	ASSIS I 000000000000	Issues & Limitations	Experiments	Conclusion
lssues &	Limitations			

Analysis

- Debug information accuracy
- What information to collect while limiting the overhead

Transformations

- $\bullet~\mbox{Rose}$ frontend/backend issues on $\mbox{Fortran}/\mbox{C}++$
- How to match the right transformation with collected metrics
- Compiler can ignore a transformation
- Directives are often compiler dependent

Verification

• Compare two different binaries (loop splitted/duplicated, disappeared, etc)

Background 0000000000	ASSIS I 000000000000	Issues & Limitations	Experiments	Conclusion
Outline				

2 ASSIST

3 Issues & Limitations

Experiments

- Impact of the Loop Count
- Impact of Specialization
- Impact of Specialization with SVT
- Impact of Specialization with Tiling

Background 0000000000	ASSIST	Issues & Limitations	Experiments	Conclusion
Experimen	ts			

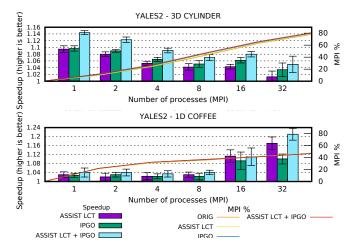
Results have been obtained on a Skylake Server and are compiled with Intel 17.0.4 and compared to Intel PGO version 17.0.4 (IPGO)

Application Pool

- Yales2 (F03): numerical simulator of turbulent reactive flows
- AVBP (F95): parallel computational fluid dynamics code
- **ABINIT (F90)**: find the total energy charge density and the electronic structure of systems made of electrons and nuclei
- POLARIS MD (F90): microscopic simulator for molecular systems
- Convolution Neural Networks (C): objet recognition.
- QmcPack (C++): computation of the real space quantum Monte-Carlo algorithms

ASSIST

Issues & Limitations


Experiments

Conclusion

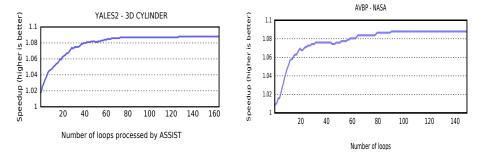
Impact of the Loop Count

Impact of the Loop Count

Comparision with IPGO and ASSIST LCT + IPGO.

ASSIST

Issues & Limitations


Experiments

Conclusion

Impact of the Loop Count

Impact of the Loop Count

	AVBP	AVBP	AVBP	Yales2	Yales2
	NASA	TPF	SIMPLE	3D Cylinder	1D COFFEE
Number of loops	149	173	158	162	122

Cumulated speedup for Yales2 - 3D Cylinder & AVBP - NASA, sorted by coverage.

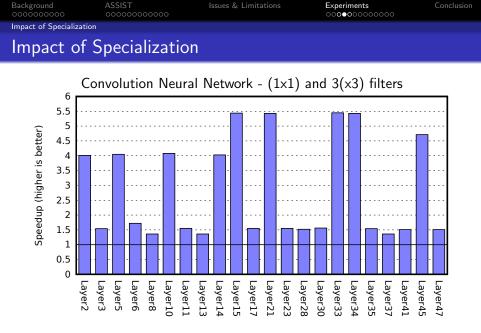
ASSIST

Issues & Limitations

Experiments

Conclusion

Impact of Specialization


Impact of Specialization

SRC ORIG

```
for (img = 0; img < nImg; ++img) {
 for (ifm = 0: ifm < nIfm: ++ifm) {</pre>
    for (ofm = 0; ofm < nOfm; ++ofm) 
      for (oj = 0; oj < ofh; ++oj) {
        ij = oj * stride h - pad h:
       for (oi = 0; oi < ofw; ++oi) {
          ii = oi * stride_w - pad_w;
          for (kj = 0; kj < kh; ++kj) {
           if (ij+kj < 0 || ij+kj >= ifh) continue;
            for (ki = 0; ki < kw; ++ki) {
             if (ii+ki < 0 || ii+ki >= ifw) continue;
             input_t[(img * input_img_stride) +
                     (ifm * input_ifm_stride) +
                     ((ij + kj) * ifwp) + (ii + ki)] +=
             output[(img * output_img_stride) +
                     (ofm * output ofm stride) +
                     (oj * ofw) + oi] *
             filter[(ofm * weight_ofm_stride) +
                     (ifm * weight_ifm_stride) +
                     (kj * kw) + ki];
   }
}
}
   }
 }
```

SRC SPE

```
if (kw == 1 && ifw == 28 && stride_w == 1 && pad_w == 0
   && ofw == 28 && kh == 1 && ifh == 28 && ofh == 28
   && stride h == 1 && pad h == 0 ) {
 for (img = 0; img < nImg; ++img) {
   for (ifm = 0; ifm < nIfm; ++ifm) {</pre>
      for (ofm = 0; ofm < nOfm; ++ofm) 
        for (oj = 0; oj < 28; ++oj) {
          ij = oj * 1 - 0;
         for (oi = 0; oi < 28; ++oi) {
            ii = oi * 1 - 0;
            for (kj = 0; kj < 1; ++kj) {
              for (ki = 0: ki < 1: ++ki) {
                input_t[(img * input_img_stride) +
                        (ifm * input_ifm_stride) +
                       ((ij + kj) * ifwp) + (ii + ki)] +=
                output[(img * output_img_stride) +
                       (ofm * output_ofm_stride) +
                       (oj * 28) + oi] *
                filter[(ofm * weight_ofm_stride) +
                       (ifm * weight ifm stride) +
                       (kj * 1) + ki];
              3
           2
       }
      }
} else {
<Original Body>
```


ASSIST specialization

ASSIST

Issues & Limitations

Experiments

Conclusion

Impact of Specialization

Impact of Specialization combined with SVT

218	
219	DO n=1, nel
220	DO no $= 1$, nvert
221	! DIR\$ SIMD
222	DO k= $-nproduct+1$, 0
223	zobj(no * nproduct + k , n) = z(ielob(no,n) * nproduct + k)
224	END DO
225	END DO
226	END DO
227	

Name	Coverage (%)	Time (s)
▼ gather_o_cpy	13.67	21.18
▼ Loop 16183 - gather o cpy.f90:197-201 - AVBP V7.0.1 orig	0.27	0.42
 Loop 16182 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig 	3.83	5.93
Loop 16181 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0.23	0.36
 Loop 16180 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig 	2.32	3.59
Loop 16178 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0.09	0.14
 Loop 16177 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig 	0.58	0.9
Loop 16194 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0.08	0.12
 Loop 16193 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig 	2.07	3.21
Loop 16192 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0.07	0.11
 Loop 16191 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig 	1.82	2.82
Loop 16214 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0	0
Loop 16213 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig	0	0
 Loop 16216 - gather_o_cpy.f90:200-201 - AVBP_V7.0.1_orig 	0	0
 Loop 16215 - gather_o_cpy.f90:200-201 - AVBP_V7.0.1_orig 	0	0
 Loop 16201 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig 	0	0
 Loop 16202 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig 	0	0
Loop 16218 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0	0
 Loop 16217 - gather_o_cpy.f90:198-201 - AVBP_V7.0.1_orig 	0	0
 Loop 16179 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig 	0	0
Loop 16212 - gather_o_cpy.f90:197-201 - AVBP_V7.0.1_orig	0	0

45 / 57

ASSIST

Issues & Limitations

Experiments

Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

Function specialization

I	Name	Coverage (%)	Time (s)
	gather_o_cpy_flat_2d_assist_nverte4_nproductmod42	7.55	12.21
	 Loop 9633 - gather_o_cpy.90:314-318 - AVBP_V7.0.1_speF Loop 9632 - gather_o_cpy.90:315-318 - AVBP_V7.0.1_speF Loop 9635 - gather_o_cpy.90:317-318 - AVBP_V7.0.1_speF Loop 9634 - gather_o_cpy.90:317-318 - AVBP_V7.0.1_speF 	0.36 2 3.79 1.37	0.58 3.23 6.13 2.21
	gather_o_cpy_flat_2d_assist_nverte4_nproductmod41	3.92	6.34
	 Loop 9637 - gather_o_cpy.90.288-292 - AVBP_V7.0.1_speF Loop 9636 - gather_o_cpy.90.289-292 - AVBP_V7.0.1_speF Loop 9639 - gather_o_cpy.90.291-292 - AVBP_V7.0.1_speF Loop 9638 - gather_o_cpy.90.291-292 - AVBP_V7.0.1_speF 	0.27 1.51 1.7 0.43	0.44 2.44 2.75 0.7
	▼ gather o cpy	2.88	4.66
ł	 Loop 9567 - gather o cpy.f90:155-158 - AVBP V7.0.1 	2.17	3.51
	 Loop 9569 - gather_o_cpy.f90:339-343 - AVBP_V7.0.1_spet- Loop 9568 - gather_o_cpy.f90:340-343 - AVBP_V7.0.1_speF gather o cpy flat 2d assist nverte4 	0.04 0.58 2.14	0.06 0.94 3.46
	▼ Loop 9645 - gather_o_cpy.f90:235-239 - AVBP_V7.0.1_speF ▼ Loop 9644 - gather_o_cpy.f90:236-239 - AVBP_V7.0.1_speF	0.07 0.39 1.28	0.11 0.63 2.07
	 Loop 9647 - gather_o_cpy.190:238-239 - AVBP_V7.0.1_speF Loop 9646 - gather_o_cpy.190:238-239 - AVBP_V7.0.1_speF 	0.4	0.65

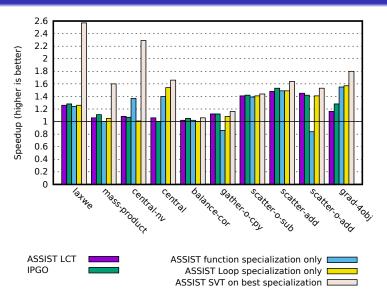
Loop specialization

Name	Coverage (%)	Time (s)
▼ gather_o_cpy	13.91	21.31
4 . Loop 9465 - gather o cpv.f90:165-168 - AVBP V7.0.1 speL	2.21	3.39
Loop 9473 - gather_o_cpy.f90:223-227 - AVBP_V7.0.1_speL	0.29	0.44
 Loop 9472 - gather o cpy.f90:224-227 - AVBP V7.0.1 speL 	3.87	5.93
Loop 9471 - gather_o_cpy.190:214-218 - AVBP_V7.0.1_Spel	0.21	0.32
 Loop 9470 - gather o cpy.f90:215-218 - AVBP V7.0.1 spel. 	2.55	3.91
Loop 9486 - gather_o_cpy.f90:223-227 - AVBP_V7.0.1_speL	0.09	0.14
 Loop 9485 - gather o cpv.f90:224-227 - AVBP V7.0.1 spel. 	2.05	3.14
Loop 9484 - gather_o_cpy.f90:241-245 - AVBP_V7.0.1_speL	0.08	0.12
 Loop 9483 - gather o cpy.f90:242-245 - AVBP V7.0.1 spel. 	1.78	2.73
5 V Loop 9468 - gather_o_cpy.f90:232-236 - AVBP_V7.0.1_speL	0.07	0.11
 Loop 9467 - gather o cpy.f90:233-236 - AVBP V7.0.1 spel. 	0.59	0.9

Best specialization + Short Vectorization Transformation

	Name	Coverage (%)	Time (s)
۲	gather_o_cpy	14.81	20.51
1	 Loop 16014 - gather_o_cpy.f90:226-236 - AVBP_V7.0.1_SVT 	3.52	4.87
2	 Loop 16013 - gather o cpy.f90:215-222 - AVBP V7.0.1_SVI 	3.09	4.28
4	 Loop 16009 - gather_o_cpy.f90:165-168 - AVBP_V7.0.1_SVT 	2.51	3.48
1	Loop 16021 - gather_o_cpy.f90:226-236 - AVBP_V7.0.1_SVT	2.46	3.41
	Loop 16020 - gather_o_cpy.f90:252-265 - AVBP_V7.0.1_SVT	2.45	3.39
5	 Loop 16011 - gather_o_cpy.f90:241-248 - AVBP_V7.0.1_SVT 	0.66	0.91

ASSIST


Issues & Limitations

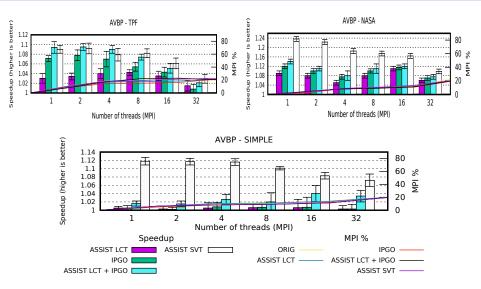
Experiments

Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

ASSIST


Issues & Limitations

Experiments

Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

ASSIST

Issues & Limitations

Experiments

Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

	Execution Time	Execution Time	Speedup	Coverage
	before trans	after trans		(orig
	(sec)	(sec)		version)
Polaris	73.32	70.26	1.04	
loop 6909	4.27	3.14	1.36	5.72%
loop 6911	3.64	2.36	1.54	4.98%

Table: Execution time and speedups of ASSIST SVT compared with the original version on Polaris using the "test_1.0.5.18" test case.

ASSIST

Issues & Limitations

Experiments

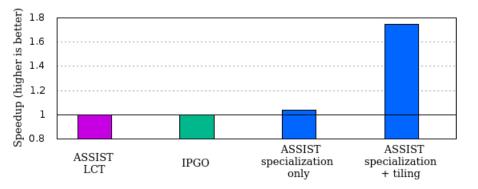
Conclusion

Impact of Specialization with Tiling

Impact of Specialization Combined with Tiling

```
!DIR$ MAQAO SPECIALIZE(choice=1,paw_opt=3,cplex=2)
                                                       SUBROUTINE opernlb_vlm(...)
!DIR$ MAQAO SPECIALIZE(choice=1,paw_opt<3,cplex=2)
                                                       IF ((choice.EQ.1).AND.(paw_opt.EQ.3)/aND(cplex.EQ.2)) then
!DIR$ MAQAO SPECIALIZE(choice=1,paw opt>3,cplex=2)
                                                        CALL opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
subroutine opernlb_ylm(choice,cplex,paw_opt,...)
                                                        RETURN
                                                       END IF
 if(choice==1) then
                                                       IF ((choice.EQ.1).AND.(paw_opt.LT.3)/aND(cplex.EQ.2)) then
                                                        CALL opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
  !DIR$ MAQAO IF_SPE_choicee1_TILE_INNER=8
 do ilmn=1, nlmn
                                                        RETURN
                                                       END IF
  do k=1, npw
   z(k)=z(k)+ffnl(K,1,ilmn)*cplx(gxf(1,ilmn) &
                                                       IF ((choice.EQ.1).AND.(paw_opt.GT.3)/aND(cplex.EQ.2)) then
                                                        CALL opernlb_vlm_ASSIST_choicee1_paw_opte3_cplexe2(...)
         ,gxf(2,ilmn),kind=dp)
                                                        RETURN
  end do
  end do
                                                       END IF
 end if
                                                       END SUBROUTINE
end subroutine
                                                      SUBROUTINE opernlb_ylm_ASSIST_choicee1_paw_opte3_cplexe2(...)
                                                       lt_bound_npw = (npw / 8) * 8
                                                       DO lv_var_k = 1, lt_bound_npw, 8
                                                         DO ilmn = 1, ilmn
                                                           DO k = lt_var_k, lt_var_k + (8-1)
                                                            z(k)=z(k)+ffnl(K,1,ilmn)*cplx(gxf(1,ilmn) &
                                                                ,gxf(2,ilmn),kind=dp)
                                                           END DO
                                                         END DO
                                                       END DO
                                                       END SUBROUTINE
                                                      SUBROUTINE opernlb_vlm_ASSIST_choicee1_paw_opti3_cplexe2(...)
                                                       END SUBROUTINE
                                                      SUBROUTINE opernlb_ylm_ASSIST_choicee1_paw_opts3_cplexe2(...)
                                                       END SUBROUTINE
```

ASSIST


Issues & Limitations

Experiments

Conclusion

Impact of Specialization with Tiling

Impact of Specialization Combined with Tiling

	# lines of code	Execution time (sec)	Speedup
original version	716	2.55	1
assist version	1338	1.47	1.75

ASSIST

Issues & Limitations

Experiments

Conclusion

Impact of Specialization with Tiling

Other results: QMCPACK other transformations

	orig	fu	split	fume
Total	58.11	55.4	53.81	51.21
loop 18800	16.75	16.59	16.2	13.6
loop 26027	16.07	12.42	12.27	11.9
loop 26026	3.22	2.19	2.27	2.1
loop 26028	3.24	2.21	2.09	2.05
loop 18501	1.49	1.51	1.23	1.18
loop 26800	1.3	1.01	1.03	1.00

Execution time (sec) of multiple versions of QMCPACK (k64s64). Orig: Original version;

fu: Full unroll version;

split: fu + split a loop to increase its vectorization ratio;

fume: split + full unroll the inbetween loop of a nest and merge unrolled body in the innermost;

Background 0000000000	ASSIST	Issues & Limitations	Experiments	Conclusion	
Impact of Specialization with Tiling					
Results S	ummary				

By application and dataset

- Yales2
 - 3D Cylinder 10% (LCT), 14% (LCT+IPGO)
 - 1D Coffee 4% (LCT), 6% (LCT+IPGO)
- AVBP
 - SIMPLE 1% (LCT), 12% (SVT)
 - NASA 8% (LCT), 24% (SVT)
 - TPF 3% (LCT), 9% (SVT)
- POLARIS
 - test.1.0.5.18 4% (SVT)
- CNN
 - all layers 50%-550%
- QMCPACK
 - k64s64 5%(FU), 8%(SPLIT), 13%(FUME]

Background 000000000	ASSIST	Issues & Limitations	Experiments 0000000000000	Conclusion
Outline				

- **2** ASSIST
- **3** Issues & Limitations

4 Experiments

Background 000000000	ASSIST	Issues & Limitations	Experiments 0000000000000	Conclusion
Conclusion				

Contributions

- Good gains on real-world applications
- Novel study of how and when well-known transformations work
- Novel semi-automatic & user controllable method with a system open to user advice and to all kinds of users
- An FDO tool which can use both static and dynamic analysis information to guide code optimization
- A flexible alternative to current compilers PGO/FDO modes.

Available on github

https://youelebr.github.io/ (maqao binary, assist sources, test suite and documentation)

Background 000000000	ASSIST 00000000000	Issues & Limitations	Experiments 000000000000	Conclusion

Conclusion

Perspectives

- Extend MAQAO analysis with source information
- Add new transformations or extend existing ones (i.e Specialization)
- Find more metrics and how to associate them to know when to trigger a transformation
- Multiple datasets
- Auto-tuning with iterative compilation using our verification system
- Drive transformation for energy consumption and/or memory

Background 000000000	ASSIST	Issues & Limitations	Experiments 0000000000000	Conclusion
Conclusion				

Any questions ?

Backup Slides

What is CQA

CQA: Code Quality Analyzer

- Goal: Assist developers in improving code performance
- Evaluate the quality of the compiler generated code
- Returns hints and workarounds to improve quality
- Static analysis (no execution / allows cross-analysis)

Main Concepts

- Relies on simplified CPU model (execution pipeline, port throughput, L1 data access)
- Key performance levers for core level efficiency:
 - Vectorizing
 - Avoiding high latency instructions
 - Having the compiler generate an efficient code
 - Reorganizing memory layout

What is Lprof

LProf: Lightweight Profiler

- Goal: Lightweight localization of application hotspots
- Dynamic analysis sampling base
- Access to hardware counters for additional information
- Results at function and loop granularity

Strengths

- Non intrusive: No recompilation necessary
- Low overhead
- Agnostic with regar to parallel runtime

What is Vprof

Vprof: Value Profiler

- Dynamic analysis tracing based
- Targets loops & functions
- detection of stable values
- Loop characterization through number of iterations
- Provides leads for code specialization

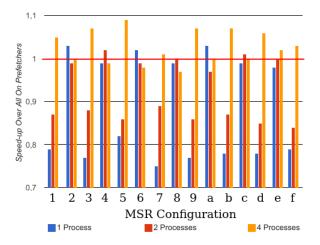
What is DECAN

DECAN: DECremental ANalysis

- Goal: modify the application to identify causes of bottlenecks and estimate associated ROI
- Transformations:
 - Remove or modify groups of instructions
 - Targets memory accesses or computation

Typical Transformations

- FP: Only Floating Point arithmetic instruction are preserved (load and store are removed)
- LS: Only load and stores are preserved (compute instructions are removed)
- DL1: memory references replaced with global variables ones (data now accessed from L1)


Configuration File

```
File = "test_userconfig1.f90"
Arch = { -- contains all informations
  All = { -- All will always be called
   loops = { --For loops of the file
      -- Describe transformation
      { line = 30, transformation = {"TILE=5"}}
   }
 }.
 -- specific target architecture
 -- call only when the user ask for it
 x86 = {
   loops = {
     { line = 26, transformation = {"TILE=5"}},
     { line = 34, transformation = {"UNROLL=8"}},
     { label = "LOOPLABEL1", transformation = {"INTERCHANGE=1,2"}}
   }
 }
```

OneView Report

```
oneview_global_metrics = {
 total time s = 43.26.
 compilation_options = "OK. \n".."",
 flow_complexity = 1.00,
 array_efficieny = 37.67,
 speedup_if_clean = 1.00,
 nb_loop_80_if_clean = 1,
 speedup_if_fp_vect = 1.00,
 nb_loop_80_if_fp_vect = 1,
 speedup_if_fully_vect = 7.14,
 nb_loop_80_if_fully_vect = 1,
 speedup_if_{11} = 2.14,
 nb_{loop_{80_{if_{11}}} = 1,
3
oneview_cleaning_report = {
 £
    loop_id = 5,
    lineStart = 5.
    lineStop = 7,
   file
             = "/home/tests/oneview_test/tuto/codelet.c",
    ite min = 1000000.
    ite_max
            = 1000000,
    ite_avg = 1000000,
    r 11 min = 2.361754348463.
    r_{11} = 2.0752602660095.
   r_l1_med = 2.3972978247604,
   vecRatio = 12.5.
 }.
```

Other results: prefetcher behavior with parallelism

Other results: prefetcher behavior at function level

