
PhD Defense

Optimisation de code base sur des transformations
source-a-source guides par des mtriques issues de profilages

Youenn Lebras

Advisor : William Jalby
Co-supervisor : Andres S. Charif-Rubial

3 July 2019
1 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Introduction

Computer Architecture Evolution

Recent evolution: a new hope ?

The performance model shifted from high frequency single core
processors to multitasking high-core-count parallel architectures

Larger vector lengths (AVX-512) & automatic vectorization

Specialized ports (i.e. FMA)

New kind of memory (i.e. HBM, Optane)

2 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Introduction

With great evolution comes great difficulties

Increasing number of different architectures

Additional optimization challenges related to parallelism

Performance issues are heavily tied to increased vector lengths and
advanced memory hierarchy

The optimization process remains key to maintain a reasonable
performance level on modern micro-processor architecture

Optimizing code has become an art

Harder and harder to optimize and maintain manually

Time consuming and error-prone

3 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Introduction

Motivating Example

4 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Goals

Goals

Key idea: Performance analysis tools (e.g. Scalasca, MAQAO, Tau) are
pretty good at identifying some specific problems, we need to go further
and fix automatically performance issues.

Automatic Source-to-Source assISTant: ASSIST

Source code transformation framework

Transformation driven framework: ideally detect whether a
transformation is beneficial or not

Exploiting performance analysis tools metrics

Open to user advice

Keep a maintainable code

5 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Compilers

Compilers

Compiler task

Transform a human readable file into a computer readable one

Optimizing an application for a target architecture

Evaluating if a sequence of transformations is optimal
Predicting the behavior of a multi-core processor which has complex
pipelines, multiple functional units, complex memory hierarchy, hardware
data prefetching, etc
Profile Guided Optimization / Feedback-Directed Optimization

6 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

PGO

Profile Guided Optimization (PGO)

3 steps

Producing an instrumented binary

Executing the binary in order to obtain a profile (feedback data)

Using the obtained feedback data to produce a new version that is
expected to be more efficient

7 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

PGO

Profile Guided Optimization (PGO)

What is done (Intel PGO)

Value profiling of indirect and virtual function calls

Intermediate language (IR) is annotated with edge frequencies and
block counts to guide optimization decisions

Grouping hot/cold functions

8 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

PGO

Compilers Limitations

Main Limitations

Remain conservative (static performance cost model & heuristics)

PGO lacks information gathered and transformations

Black box

Can ignore user directives

Searching the best sequence of transformations remains too complex

”Never send a human to do a machine job”
-Agent Smith

9 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

PGO

Performance Analysis Tool

What are they?

Can be classified into two types :

Static: estimate different issues and controle the code quality

Dynamic: find what happened during the execution

What are they for?

Analyze & profile sequential/parallel codes

Detect hotspots & performance issues / bottlenecks

Provide hints on how to improve the code

10 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Contributions

Contributions

A novel study of how and when well-known transformations allow to
gain on real-world HPC applications using a novel FDO
source-to-source approach

A novel semi-automatic and user controllable method with a system
open to user advices

An FDO tool combining both dynamic and static analysis information
to guide code optimization

A more flexible alternative to compilers PGO / FDO modes

A verification system to check if our transformations do not have a
negative impact on performances

11 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Outline

1 Background

2 ASSIST
MAQAO
Design & Implementation
Supported Transformations
How to Trigger Transformations
Assessing Transformation Verification

3 Issues & Limitations

4 Experiments

5 Conclusion
12 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

MAQAO

MAQAO

MAQAO Modules

Static analyzer

CQA: Code Quality
Analyzer

Dynamic analyzer
(using sampling & tracing)

LProf: Lightweight Profiler
VProf: Value Profiler
DECAN: DECremental
ANalysis

Global view

OneView

13 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Design & Implementation

Overview of Tool Usage

Automatic Source-to-Source assISTant (ASSIST):

14 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Design & Implementation

Automatic Source-to-Source assISTant (ASSIST)

Technical Design

Based on the Rose Compiler Project

Support of Fortran 77, 90, 95, 2003 / C / C++03

Same language at input and output

Aiming at be easy to use with a simple user interface

Targeting different kind of users

Integrated as a MAQAO Module

15 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Supported Transformations

Different types of transformations

AST Modifier

Unroll

Full Unroll

Interchange

Tile

Strip Mine

Loop/function Specialization

Directive(s) insertion

Loop Count (LCT)

Mix of both

Short Vectorization (SVT)

16 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Zoom on LCT

Loop count Transformation - Type : Directives insertion

Loop count knowledge enables to guide compiler optimizations choices

Compilers cannot always guess the loop trip count at compile time

Simplify

Control flow (less loop versions)
Choice of vectorization/unrolling

Requires dynamic feedback (VPROF)

Limitations

Loop bounds are dataset dependent
Only for Intel Compiler; unfortunately, other compilers do not offer such
capability

17 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Zoom on SVT

Short Vectorization Transformation - Type : Mix AST modifier and
directive insertion

Compilers may refuse to vectorize a loop with too few iterations

Performing a loop decomposition

Increasing the vectorization ratio by:

Forcing the vectorization (SIMD Directive)
Avoiding dynamic or static loop peeling transformation (UNALIGNED
Directive)

18 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Zoom on SVT

19 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Zoom on SVT

20 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

21 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

22 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

23 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

24 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

25 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

26 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

27 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

28 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Supported Transformations

Transformation Example

29 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

How to Trigger Transformations

How to Trigger Transformations

3-ways

Insert directives in sources

Provide a transformation script

Use OneView report

SVT => CQA (vectorization ratio) + VPROF (iteration count)
Tiling => DECAN (DL1)
Loop count => VProf (Iteration count)

30 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

How to Trigger Transformations

How to Trigger Transformations

3-ways

Insert directives in sources

Provide a transformation script

Use OneView report

SVT => CQA (vectorization ratio) + VPROF (iteration count)
Tiling => DECAN (DL1)
Loop count => VProf (Iteration count)

31 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

How to Trigger Transformations

How to Trigger Transformations

3-ways

Insert directives in sources

Provide a transformation script

Use OneView report

SVT => CQA (vectorization ratio) + VPROF (iteration count)
Tiling => DECAN (DL1)
Loop count => VProf (Iteration count)

32 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Assessing Transformation Verification

Assessing Transformation Verification

Process

Step 1: Execute ONEVIEW on the Nth version.

Step 2: Use analysis info to apply transformation on the Nth version

Step 3: Compare global metrics and CQA, DECAN and VPROF
metrics between Nth and N + 1th.

33 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Assessing Transformation Verification

Assessing Transformation Verification

34 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Outline

1 Background

2 ASSIST

3 Issues & Limitations

4 Experiments

5 Conclusion

35 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Issues & Limitations

Analysis

Debug information accuracy

What information to collect while limiting the overhead

Transformations

Rose frontend/backend issues on Fortran/C++

How to match the right transformation with collected metrics

Compiler can ignore a transformation

Directives are often compiler dependent

Verification

Compare two different binaries (loop splitted/duplicated, disappeared,
etc)

36 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Issues & Limitations

Analysis

Debug information accuracy

What information to collect while limiting the overhead

Transformations

Rose frontend/backend issues on Fortran/C++

How to match the right transformation with collected metrics

Compiler can ignore a transformation

Directives are often compiler dependent

Verification

Compare two different binaries (loop splitted/duplicated, disappeared,
etc)

37 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Issues & Limitations

Analysis

Debug information accuracy

What information to collect while limiting the overhead

Transformations

Rose frontend/backend issues on Fortran/C++

How to match the right transformation with collected metrics

Compiler can ignore a transformation

Directives are often compiler dependent

Verification

Compare two different binaries (loop splitted/duplicated, disappeared,
etc)

38 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Outline

1 Background

2 ASSIST

3 Issues & Limitations

4 Experiments
Impact of the Loop Count
Impact of Specialization
Impact of Specialization with SVT
Impact of Specialization with Tiling

5 Conclusion

39 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Experiments

Results have been obtained on a Skylake Server and are compiled with Intel
17.0.4 and compared to Intel PGO version 17.0.4 (IPGO)

Application Pool

Yales2 (F03): numerical simulator of turbulent reactive flows

AVBP (F95): parallel computational fluid dynamics code

ABINIT (F90): find the total energy charge density and the
electronic structure of systems made of electrons and nuclei

POLARIS MD (F90): microscopic simulator for molecular systems

Convolution Neural Networks (C): objet recognition.

QmcPack (C++): computation of the real space quantum
Monte-Carlo algorithms

40 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of the Loop Count

Impact of the Loop Count

Comparision with IPGO and ASSIST LCT + IPGO.

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of processes (MPI)

YALES2 - 3D CYLINDER

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 1.24

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of processes (MPI)

YALES2 - 1D COFFEE

Speedup

ASSIST LCT

IPGO

ASSIST LCT + IPGO

MPI %
ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

41 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of the Loop Count

Impact of the Loop Count

AVBP AVBP AVBP Yales2 Yales2
NASA TPF SIMPLE 3D Cylinder 1D COFFEE

Number of loops 149 173 158 162 122

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 20 40 60 80 100 120 140 160

S
p
e
e
d
u
p
 (

h
ig

h
e
r
 i
s
 b

e
t
t
e
r
)

Number of loops processed by ASSIST

YALES2 - 3D CYLINDER

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 20 40 60 80 100 120 140S
p
e
e
d
u
p

(
h
ig

h
e
r

is

b
e
t
t
e
r
)

Number of loops

AVBP - NASA

Cumulated speedup for Yales2 - 3D Cylinder & AVBP - NASA, sorted by
coverage.

42 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization

Impact of Specialization

SRC ORIG SRC SPE

43 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization

Impact of Specialization

Convolution Neural Network - (1x1) and 3(x3) filters

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

L
a
y
e
r2

L
a
y
e
r3

L
a
y
e
r5

L
a
y
e
r6

L
a
y
e
r8

L
a
y
e
r1

0

L
a
y
e
r1

1

L
a
y
e
r1

3

L
a
y
e
r1

4

L
a
y
e
r1

5

L
a
y
e
r1

7

L
a
y
e
r2

1

L
a
y
e
r2

3

L
a
y
e
r2

8

L
a
y
e
r3

0

L
a
y
e
r3

3

L
a
y
e
r3

4

L
a
y
e
r3

5

L
a
y
e
r3

7

L
a
y
e
r4

1

L
a
y
e
r4

5

L
a
y
e
r4

7
S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

ASSIST specialization

44 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization

Impact of Specialization combined with SVT

45 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

Function specialization Loop specialization

Best specialization + Short Vectorization Transformation

46 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

laxw
e

m
ass-product

central-nv

central

balance-cor

gather-o-cpy

scatter-o-sub

scatter-add

scatter-o-add

grad-4obj

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

ASSIST LCT

IPGO
ASSIST function specialization only

ASSIST Loop specialization only

ASSIST SVT on best specialization

47 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p

(
h
ig

h
e
r

is

b
e
t
t
e
r
)

M
P
I
%

Number of threads (MPI)

AVBP - TPF

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT

 1

 1.04

 1.08

 1.12

 1.16

 1.2

 1.24

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p

(
h
ig

h
e
r

is

b
e
t
t
e
r
)

M
P
I

%

Number of threads (MPI)

AVBP - NASA

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

1 2 4 8 16 32
 0

 20

 40

 60

 80

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

M
P
I
%

Number of threads (MPI)

Speedup MPI %

AVBP - SIMPLE

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT ORIG

ASSIST LCT

IPGO

ASSIST LCT + IPGO

ASSIST SVT

48 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with SVT

Impact of Specialization Combined with SVT

Execution Time Execution Time Speedup Coverage

before trans after trans (orig

(sec) (sec) version)

Polaris 73.32 70.26 1.04

loop 6909 4.27 3.14 1.36 5.72%

loop 6911 3.64 2.36 1.54 4.98%

Table: Execution time and speedups of ASSIST SVT compared with the original
version on Polaris using the ”test 1.0.5.18” test case.

49 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with Tiling

Impact of Specialization Combined with Tiling

50 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with Tiling

Impact of Specialization Combined with Tiling

lines of code Execution time (sec) Speedup

original version 716 2.55 1

assist version 1338 1.47 1.75

51 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with Tiling

Other results: QMCPACK other transformations

orig fu split fume

Total 58.11 55.4 53.81 51.21

loop 18800 16.75 16.59 16.2 13.6
loop 26027 16.07 12.42 12.27 11.9

loop 26026 3.22 2.19 2.27 2.1

loop 26028 3.24 2.21 2.09 2.05

loop 18501 1.49 1.51 1.23 1.18

loop 26800 1.3 1.01 1.03 1.00

Execution time (sec) of multiple versions of QMCPACK (k64s64).
Orig: Original version;
fu: Full unroll version;
split: fu + split a loop to increase its vectorization ratio;
fume: split + full unroll the inbetween loop of a nest and merge unrolled
body in the innermost;

52 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Impact of Specialization with Tiling

Results Summary

By application and dataset

Yales2

3D Cylinder - 10% (LCT), 14% (LCT+IPGO)
1D Coffee - 4% (LCT), 6% (LCT+IPGO)

AVBP

SIMPLE - 1% (LCT), 12% (SVT)
NASA - 8% (LCT), 24% (SVT)
TPF - 3% (LCT), 9% (SVT)

POLARIS

test.1.0.5.18 - 4% (SVT)

CNN

all layers - 50%-550%

QMCPACK

k64s64 - 5%(FU), 8%(SPLIT), 13%(FUME]

53 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Outline

1 Background

2 ASSIST

3 Issues & Limitations

4 Experiments

5 Conclusion

54 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Conclusion

Contributions

Good gains on real-world applications

Novel study of how and when well-known transformations work

Novel semi-automatic & user controllable method with a system open
to user advice and to all kinds of users

An FDO tool which can use both static and dynamic analysis
information to guide code optimization

A flexible alternative to current compilers PGO/FDO modes.

Available on github

https://youelebr.github.io/ (maqao binary, assist sources, test suite and
documentation)

55 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Conclusion

Perspectives

Extend MAQAO analysis with source information

Add new transformations or extend existing ones (i.e Specialization)

Find more metrics and how to associate them to know when to trigger
a transformation

Multiple datasets

Auto-tuning with iterative compilation using our verification system

Drive transformation for energy consumption and/or memory

56 / 57

Background ASSIST Issues & Limitations Experiments Conclusion

Conclusion

Any questions ?

57 / 57

Backup Slides

58 / 57

What is CQA

CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance

Evaluate the quality of the compiler generated code

Returns hints and workarounds to improve quality

Static analysis (no execution / allows cross-analysis)

Main Concepts

Relies on simplified CPU model (execution pipeline, port throughput,
L1 data access)

Key performance levers for core level efficiency:

Vectorizing
Avoiding high latency instructions
Having the compiler generate an efficient code
Reorganizing memory layout

59 / 57

What is Lprof

LProf: Lightweight Profiler

Goal: Lightweight localization of application hotspots

Dynamic analysis sampling base

Access to hardware counters for additional information

Results at function and loop granularity

Strengths

Non intrusive: No recompilation necessary

Low overhead

Agnostic with regar to parallel runtime

60 / 57

What is Vprof

Vprof: Value Profiler

Dynamic analysis tracing based

Targets loops & functions

detection of stable values

Loop characterization through number of iterations

Provides leads for code specialization

61 / 57

What is DECAN

DECAN: DECremental ANalysis

Goal: modify the application to identify causes of bottlenecks and
estimate associated ROI

Transformations:

Remove or modify groups of instructions
Targets memory accesses or computation

Typical Transformations

FP: Only Floating Point arithmetic instruction are preserved (load and
store are removed)

LS: Only load and stores are preserved (compute instructions are
removed)

DL1: memory references replaced with global variables ones (data now
accessed from L1)

62 / 57

Configuration File

63 / 57

OneView Report

64 / 57

Other results: prefetcher behavior with parallelism

65 / 57

Other results: prefetcher behavior at function level

66 / 57

	Background
	ASSIST
	MAQAO
	Design & Implementation
	Supported Transformations
	How to Trigger Transformations
	Assessing Transformation Verification

	Issues & Limitations
	Experiments
	Impact of the Loop Count
	Impact of Specialization
	Impact of Specialization with SVT
	Impact of Specialization with Tiling

	Conclusion
	Appendix

