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Introduction
Context

 Deal with HPC applications

BEFORE AFTER

Shift around 2005

1 core at high frequency Multiple cores at lower frequency

 Running on a cluster
 Bigest: 16 Petaflops

 16 000 000 000 000 000 flops


 Composed of multicore machines
CEA Curie 1.3 Petaflops

3/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

Introduction
Leveraging parallelism

 Huge issue: exploiting parallelism

Frequency Increase Era Multi/Many-core Era

+Ghz

Growing discrepancy

Pe
rf
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m
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ce

Time

2005 2012+
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Introduction
Future trends

 Performance will continue increasing
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Performance Analysis
What is it ?

 Understand the performance of an application
 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem
 Maximizing the number of views = better understand

 Use techniques and tools to understand

 Once understood       Optimize application
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Performance Analysis
Why is it complex ? (1/4)

 Modern machines are very complex:
 Complex architectures: not easy to fully exploit
 Access to memory = huge impact: the memory wall

The memory wall
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The memory wall
 A variable cost  to access data

CPU
Registers

Main
Memory

Level 1
Cache

Level 2
Cache … Level n

Cache
Disk

Storage

CPU Registers

L1 Instruction Cache L1 Data Cache

L2 Unified Cache

L3 Shared Cache

Main memory Remote memory

Performance Analysis
Why is it complex ? (2/4)

 To avoid memory cost: caches
 Issues related to caches:

 Structure
 Addressing: hit / miss
 Data coherency
 Data locality
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NUMA

 More complex mechanism for LLC (NUCA)
 Remote memory location: NUMA

NUCA

Performance Analysis
Why is it complex ? (3/4)

The memory wall

L3 Shared Cache
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Performance Analysis
Why is it complex ? (4/4)

 Performance issues can occur at multiple levels:
 Source | Compiler (Binary) | RT | OS | Hardware

 Too much is expected from the compiler
 ”Usual” compilers: lack of a dynamic model

 Multiple parallel programming paradigms exist
 Tools must take it into account
 Generally we need multiple tools
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 Modeling:
 + Fast
 - Low precision

 Measurement : 
 Tracing: precise behavior       Precise but slow
 Sampling: rate or count          Fast but less precise
 Profiling: agregated statistics      tracing, sampling

 Simulation: 
 + Precise
 - Very slow

Performance Analysis
Multiple analysis approaches
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Performance Analysis
Existing tools
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Performance Analysis
Target? Contributions

 Current tools not sufficient to fix memory issues
 Need a precise memory behavior characterization

 Focus on one machine node 
 Shared memory model: OpenMP

 Helpfull analyses for users:
 Provide usefull and understandable feedback
 That correlates issues to source code

 Binary level: instrument OpenMP programs
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Instrumentation Language
Related work

Dynsinst PIN PEBIL
Language type API Oriented / DSL API Oriented API Oriented

Instrumentation type Static/Dynamic binary Dynamic binary Static binary

Overhead High/High High Low

Robust Yes Yes No

 Current state of the art: 
 Dyninst appears as the most complete
 Not sufficient
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 A domain specific language to easily build tools
 Fast prototyping of evaluation tools

 Easy to use      easy to express       productivity
 Focus on what (research) and not how (technical)

 Coupling static and dynamic analyses 
 Static binary instrumentation

 Efficient: lowest overhead
 Robust: ensure the program semantics
 Accurate: correctly identify program structure

 Drive binary manipulation layer of MAQAO tool

Instrumentation language
Why? Yet another language ?
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Instrumentation Language
What is binary instrumentation ?

 Inserting probes at specific points
 Example: before a call site

 Using instruction or basic bloc relocation

Exit

Entry

Block1 Block3

Block2

mov %edi,%r13d

mov %rsi,%r14

sar       $0x3,%rbp

mov %rdx,%r15

callq 400f08 <Callee>

Content of basic block 3

Assembly instructions

Probecallq 400fa8 <UserFn>

callq 400fa8 <UserFn>

callq 400f08 <Callee>

jmp next instruction 

End of binary

Relocation

18/58



Method 1: using trampolines Method 2: function relocation

Cannot deal with 1-Byte basic blocks Cannot handle pointer (indirect branches)
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 Problem: instrumenting small basic blocks

Instrumentation Language
Advanced static analysis

Exit

Entry

Block1

Function DoExec

Exit

Entry

Block1

Function DoExec

Probe

Probe

Exit

Entry

Block1

Exit

Entry

Block1

Probe

Function DoExec Function DoExec

Probe
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 Problem: instrumenting 1-Byte blocks

 Exemple: dc.A (NPB-OMP) => 8x improvement 

Method 1: only OS signal handlers Our method: use predecessors (CFG)

Huge overhead Minimizes/Removes OS Signal execution

Instrumentation Language
Advanced static analysis

Exit

Entry

Block1

Function DoExec

Probe

Block3

Block2

OS Signal
Exit

Entry

Block1

Probe

Block3

Block2

OS Signal

Function DoExec

Probe Exit
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 Resolve indirect jumps: locate hidden exits

 Introduced conditional probes
 Using ranges (function start/stop)
 If so: insert exit probe(s)

Instrumentation Language
Advanced static analysis

…

mov %rdx,%r15

mov %edi,%r13d

mov %rsi,%r14

sar       $0x3,%rbp

jmpq * %r14

…

Jmpq* 

sar

mov

Conditional
Exit probe

Jmpq* 

sar

mov

Exit Probe

%r14< F.Start or %r14 > F.Stop

else if
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 Handling interleaved functions
 Required for OpenMP codes

 Example: bt.A (NPB-OMP)

 Solution: 
 Detect connected components 

(static analysis)

 Try to detect inlining:
 Heuristic: callsite + debug info 
 Works most of the time

Instrumentation Language
Advanced static analysis
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Instrumentation File

Binaries | Passes | Properties| Global variables | Probes | Events | Filters |Actions |Runtime code
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Instrumentation Language interpreter
Based on Lua language

Modified binary(ies)/library(ies)

Instrumentation Language
Overview
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 Events: Where ?

Instrumentation Language
Language concepts/features

Level Events
Program Entry / Exit (avoid LD + exit handlers)
Function Entries / Exits
Loop Entries / Exits / Backedges
Block Entry / Exit
Instruction Before / After
Callsite Before / After
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 Probes: What ?
 External functions

 Name
 Library
 Parameters: int,string,macros,function (staticdynamic)
 Return value
 Demangling
 Context  saving

 ASM inline: gcc-like

 Runtime embedded code (lua code within MIL file)

_ZN3MPI4CommC2Ev
MPI::Comm::Comm()

Instrumentation Language
Language concepts/features
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 Filters:

 Why ? Reduce instrumentation probes
 Target what really matters

 Lists: regular expressions
 White list 
 Black list

 Built-in: structural properties attributes 
 Example: nesting level for a loop

 User defined: an action that returns true/false

Instrumentation Language
Language concepts/features
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 Actions:

 Why ? For complex instrumentation queries

 Scripting ability (Lua code)

 User-defined functions

 Access to MAQAO Plugins API (existing modules)

Instrumentation Language
Language concepts/features
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 Passes: 

 To address complex multistep instrumentations

 Example: detect OpenMP events

 Step 1: static analysis to detect sequences of call sites
 Only events and actions are used

 Step 2: instrument
 Select (same or new) events and insert probes based on step 1

Instrumentation Language
Language concepts/features
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Ex: TAU Profiler
run_dir = "/PATH_TO_OUTPUT_FOLDER/",
at_exit = {{ name = "tau_dyninst_cleanup " , lib = " libTau.so " }},
main_bin = {
path= "/PATH_TO_main_binary",
output_suffix = "_i",
envvars="LD_LIBRARY_PATH=/PATH_TO_tau_library/",
functions={{

entries = {{
at_program_entry = {{

name = "trace_register_func",  lib = "libTau.so",
params = {

{type = "macro",value = "fct_info_summary"},
{type = "macro",value = "profiler_id"},

}
}},
name = "traceEntry", lib = "libTau.so",
params = { {type = "macro",value = "profiler_id"} }

}},
exits = {{

name = "traceExit",  lib = "libTau.so",
params = { {type = "macro",value = "profiler_id"} }

}}
}}

};

Events

Probes

Configuration

Instrumentation Language
What does it look like ?
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 Integrated into TAU toolkit (previous example)
 tau_rewrite
 More expressive:

 MIL: 20 lines
 Dyninst: 200 lines

 Ongoing integration with Score-P (H4H project)

Instrumentation Language
Collaborations
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 Using TAU profiler
 NPB-OMP: 12 threads
 More robust: all
 Faster: up to 8x
 JIT version (MILRT) 

remains affordable

Instrumentation Language
Comparing MIL and Dyninst overhead using TAU

1-Byte basic block problem

trampoline mechanism
overhead

8x

4.5x

8x
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Instrumentation Language
Comparing MIL and Dyninst overhead using TAU

Accuracy of results: output of thread1 for bt.A
MIL

Dyninst

32/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

 Introduction

 Performance analysis

 Instrumentation Language

 Memory behavior characterization

 MAQAO tool

 Conclusion and Future work

Outline

33/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

Memory behavior characterization
Overview

 Target: memory bounded applications

 Focus on OpenMP (2.5) applications 

 A loop centric approach

 Tracing = 2 major challenges:
 Storing all the memory addresses
 Time to gather the trace

 Analyze the traces: 
 Single threaded: access patterns
 Multi threaded: understanding interactions between threads
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 Targets memory instructions: loads, stores

 Per thread – Per instruction

 Trace collection: memory trace library (MTL)
 Based on NLR algorithm (Ketterlin & Clauss)
 Handles multi-threaded applications
 Added simplified timestamps (cannot compress all timestamps)

 Simplified timestamps:
 MIN-MAX intervals
 Explicit synchronization: OpenMP = #OMP_BARRIER

Memory behavior characterization
Storing all the memory addresses
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Memory behavior characterization
Compressing address references

for (int n=0; n<M; n++) 
if (lambdax[n] > 0.)

for (int i=0; i<NCz; i++)
for (int j=1; j<NCx; j++)

J_upx[IDX3C(n,j,M,i,(NCx+1)*M)] = …

for i0 = 0 to 49
for i1 = 0 to 63

for i2 = 0 to 149
for i3 = 0 to 198

val 0x7f00bd1f0690 + 8*i1 + 217600*i2 + 1088*i3

Source code Trace for store instruction

 Polytope model:
 Compression: regular accesses are stored as loops

 Do not represent source loop but spatial locality

 Each level in: a different offset based on the same start address

 Strides can be easily derived:
 For each level: stride = offset / sizeof(instruction)

 Each instruction can have multiple polytopes (regularity)

Start address
Offset
Level in
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 Naive method: 
 instrument all memory accesses

 Enhanced method: prior static analysis
 Find loop invariants and inductions 
 Instrument invariants 
 Ignore memory accesses based on them (derived)
 Instrument naively all the others
 Reconstruct address flows

Memory behavior characterization
Instrumentation time
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Memory behavior characterization
Comparing Naive and Enhanced methods

Benchmark Naive Overhead Enhanced Overhead Improvement

SOMP 312.swim_m 273x 0.04x 6825x

SOMP 314.mgrid_m 974x 8.36x 116.5x

NAS PB ft.B 2160x 349x 6x

 Dramatically improves performance in some cases

 Lowers, but cannot do much with irregular codes

Comparing instrumentation overheads
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 Single threaded aspects
 Transformation opportunities, e.g.: loop interchange
 Data reshaping opportunities , e.g.: array splitting
 Detect alignment issues

 Understanding interactions between threads :
 Load balancing 
 Reuse / False sharing
 Thread affinity

Memory behavior characterization
Exploiting the memory traces

39/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

Memory behavior characterization
Single threaded aspects: Inefficient patterns

Real code example: PNBENCH

Function Loop (MAQAO id) % of Wall time

flux_numerique_z
193

18
195

flux_numerique_x 204
17

206

 Application from CEA
 Parallel programming model: MPI
 Profiling with MAQAO tool provides hotspots: 

 These loops where characterized as memory bounded
 Need a precise memory behavior characterization
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Memory behavior characterization
Single threaded aspects: Inefficient patterns

Load (Double) - Pattern: 8*i1 (Hits : 100% | Count : 1)
Load (Double) - Pattern: 8*i1+217600*i2+1088*i3 (Hits : 100% | Count : 1)
Store (Double)- Pattern: 8*i1+218688*i2+1088*i3 (Hits : 100% | Count : 1)

for (int n=0; n<M; n++) 
if (lambdaz[n] > 0.) {
for (int j=0; j<mesh.NCx; j++) 

for (int i=1; i<mesh.NCz; i++) 
J_upz[IDX3C(n,i,M,j,(mesh.NCz+1)*M)] = Jz[IDX3C(n,i-

1,M,j,(mesh.NCz)*M)] * lambdaz[n];
}
if (lambdaz[n] < 0.){

 Stride 1 (8/8) one access for outmost
 Poor access patterns for two instructions
 Idealy: smallest stides inside to outside
 Here: interchange n and i loops

MTL output

Real code example: PNBENCH
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Memory behavior characterization
Single threaded aspects: Inefficient patterns

Real code example: PNBENCH

for (int n=0; n<M; n++) {
if (lambdaz[n] > 0.){
for (int j=0; j<NCx; j++)

for (int i=1; i<NCz; i++) 
// loop 193

J_upz[IDX3C(n,i,M,j,(NCz+1)*M)]= 
Jz[IDX3C(n,i-1,M,j,(NCz)*M)] * 
lambdaz[n];

}
if (lambdaz[n] < 0.)

…//loop 195
}

for (int j=0; j<NCx; j++)
for (int n=0; n<M; n++) {
if (lambdax[n] > 0.){
for (int i=1; i<NCz; i++) 

// loop 193

J_upz[IDX3C(n,i,M,j,(NCz+1)*M)]= 
Jz[IDX3C(n,i-1,M,j,(NCz)*M)] * 
lambdaz[n];

}
if (lambdaz[n] < 0.)

…//loop 195
}

Original After transformation

7.7x local speedup (loops)   1.4x GLOBAL speedup

 Example: flux_numerique_z, loop 193 (same for 195)
 Same kind of optimization for loops 204 and 206
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 Instructions in original code not aligned: 
 Padding if complex structure
 Compiler flags, pragmas to align (e.g.: vectors)
 Allocate aligned memory: use posix_memalign()

 Architecture issue: even if aligned 
 Up to 10 cycles penalty
 Micro benchmarking on each new machine
 Warn user about values (alignment) to avoid

Memory behavior characterization
Single threaded aspects: data alignment
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 Using all the available theads is not always the 
best choice
 Find out the best thread number

Memory behavior characterization
Understanding interactions between threads

Benchmark
Reference Best

Gain
WTime (s) Threads WTime (s) Threads

NPB CG.A 0.62 96 0.42 36 32%

NPB FT.A 2.29 96 1.47 48 35%

SOMP 320.mgrid_m R 111.14 40 84.71 32 24%

SOMP 312.swim_m R 122.63 40 79.22 32 35%

Motivating example
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Load balancing

Memory behavior characterization
Understanding interactions between threads

CG (left) and FT (right) NAS  Parallel benchmark running  on 96 Threads

%
 m

em
or

y 
ac

ce
ss

es

 Best execution time: 36 | 48 threads with a compact affinity.

 Not sufficient to understand

Threads
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Data sharing

Memory behavior characterization
Understanding interactions between threads

LU decomposition application 
(OpenMP) on a 96 cores machine 
(4 nodes – 16 sockets)

Evaluates data sharing between  
Nodes/Sockets : 

• Working set (shared/not shared) 

• Coherence based on shared 
cache lines (worst case)

Load/Load Load/Store

Store/Store Working set
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 Rearranging threads: different pinning (affinity)
 Automatically : find and swap candidates
 Let user choose

 Reduce the number of thread
 Shared resources saturation
 Lack of parallelism (communication waste)

 Predict behavior on next generation architectures
 Add architecture definitions
 Generate corresponding trace on existing architectures

Memory behavior characterization
Understanding interactions between threads

Data sharing
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 OpenMP runtime parameters
 Available metrics not sufficient to predict the correct number of threads

 Suspect resource saturation issue when using all the available threads

 Affinity proposed by Intel runtime provides close to best results

 Symmetrical nature of OpenMP codes is an issue

 Reuse / False Sharing
 Benchmarks does not exhibit significant issues due to false sharing

 Maybe more in real applications

Memory behavior characterization
Understanding interactions between threads

Results
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 Binary level : what is really executed

 Loop-centric approach

 Correlate binary to source code

 Coupling static and dynamic analyses

 Produce user-understandable reports 

 Iterative approach

 Extensible through a scripting interface

MAQAO Tool
Overview
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Example of script : Display memory instructions

MAQAO Tool
Powerfull scripting interface
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STAN MTL

API bindings to Analysis And Binary layers

MIL

Analysis Layer

Loops

Instructions

Functions

Basic blocks

Binary Manipulation Layer

Re-assemble Patch/Rewrite

DisassembleDisassembler
Generator

…DECAN

MAQAO Lua Plugins

Debug symbols

Demangling

Other code abstraction 
algorithms

PROFILER

MAQAO Tool
MAQAO Framework
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 Decision tree: smallest possible
 Detect hot spots: 

 Function (with/without callgraph) or loops (outer)
 Include static estimation (sort functions)

 Code type characterization:
 Through dynamic analysis (DECAN)

 If memory bound: Memory behavior characterization
 If compute bound: Static analysis

 Iterative approach: 
 user chooses to start over again if it is worth

MAQAO Tool
Methodology
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 Contribute since 2006
 Old version, early days: 

 IA64: performance model, data dependency graph
 Scripting interface (integration of Lua)
 X86 assembly parser

 New version, during the thesis:
 MIL 
 MTL
 Profiler

MAQAO Tool
Contributions

Dynamic analysis
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Conclusion

 An instrumentation language to easily build 
custom performance evaluation tools

 A memory bahavior characterization tool

 A coase grain analysis tool: Profiler

 A methodology to analyze and optimize 
applications using MAQAO framework

 Contributions integrated into MAQAO tool along 
with external contributions
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Future work

 Models: we studied OpenMP but not MPI
 Extend MIL: 

 More domain specific elements (counters,timers)
 Complex events: support OpenMP

 Extend MTL: 
 Extend to OpenMP tasks
 Integrate timing information: temporal aspects
 Connect with runtimes

 Get information (OpenMP: chunks size, strategy)
 Provide information for betters decisions
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Thanks for your attention !

Questions ?
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