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Abstract—Using the MAQAO loop static analyzer, we char-
acterize a corpus of binary loops extracted from common
benchmark suits such as SPEC, NAS, etc. and several industrial
applications. For each loop, MAQAO extracts low-level assembly
features such as: integer and floating-point vectorization ratio,
number of registers used and spill-fill, number of concurrent
memory streams accessed, etc. The distributions of these features
on a large representative code corpus can be used to evaluate
compilers and architectures and tune them for the most fre-
quently used assembly patterns. In this paper, we present the
MAQAO loop analyzer and a characterization of the 4857 binary
loops. We evaluate register allocation and vectorization on two
compilers and propose a method to tune loop buffer size and
stream prefetcher based on static analysis of benchmarks.

Keywords—Benchmarking and Assessment; Software Monitor-
ing and Measurement; HPC Monitoring and Instrumentation;
Modeling, Simulation and Evaluation Techniques

I. INTRODUCTION

To be efficient on a large set of applications, new architec-
tures and compilers must be tested on as many benchmarks as
possible. The cost of benchmarking grows with the number of
benchmarks considered. Testing a new architecture or compiler
on thousand of benchmarks may not be feasible. In this paper,
we propose to use fast static analysis as a preliminary step in
the tuning process.

Compilers must be tuned to better harness new architec-
tural features. To efficiently generate the code for a given
architecture, compilers use an approximate model of the
architecture and profitability heuristics, which guide the code
transformations. Usually, tuning the compiler heuristics is
a tedious and error prone manual work done by compiler
developers. Our approach simplifies this process by identifying
loops with sub-optimal code (eg. badly vectorized, too big for
the architecture loop buffer). The proposed static analysis gives
a quick estimate of the generated code quality and therefore
could be transparently integrated into an automated compiler
evaluation process. We demonstrate the applicability of the
proposed approach for two compiler transformations: register
allocation and vectorization.

For architectures, we consider the problem of selecting
good hardware parameters as the number of virtual registers,
the loop buffer size or the kind and number of dispatch
ports. Finding the sweet-spot for these parameters through

benchmarking may require many iterations. The number of
testing iterations could be reduced if an oracle provided good
enough initial values. We propose a method to derive statically
good initial candidates for hardware parameters.

First, we collect a body of 4857 binary loops extracted from
a set of benchmarks and real industrial applications. Each loop
is dissected with the MAQAO static loop analyzer [1], [2],
which extracts a large set of low level characteristics such as:
number of register used, number of values read in the stack,
vectorization ratio, and pressure on dispatch ports.

MAQAO statistics are aggregated for all the loops in our
database. To get a realistic profile, we weight loops features
proportionally to their running time and discard loops that have
little impact on the application running time. This analysis
allows to profile the assembly characteristics of many different
code fragments. By using a very large set of benchmarks, we
can identify the most frequent micro-architectural bottlenecks.

The empirical distributions of these assembly features are
used to select good candidates for sizing architecture parame-
ters. Knowing the distribution of the used registers and spill-
fill per loop can be used to evaluate the pay-off (cost) of
adding (removing) registers in an architecture. For example,
the number of register could be selected so that 90% of the
loops are free of registers spills. The port pressure distribution,
may help decide how many arithmetic, load and store ports are
needed to balance dispatch rate. Of course, this decision must
be weighted against the power, silicium and complexity cost of
adding new dispatch ports to an architecture. But knowing the
empirical percentage of benchmarks that could benefit from a
new feature helps focusing on big payoff features. Our method
is based on the analysis of the assembly code, which is usually
produced by a compiler (except for some manually optimized
assembly sections in highly specific programs), therefore the
compiler effect must be taken into account. Our approach
estimates the impact of new architecture features for a fixed
binary or the impact of different compilers for a fixed target
architecture.

The main contributions of this paper are:

1) a profile of low-level characteristics of a large represen-
tative body of applications

2) an evaluation of compiler’s register allocation and vec-
torization



3) a static assembly characterization methodology to tune
the loop buffer size and the hardware prefetcher

Section II presents the MAQAO static loop analyzer ar-
chitecture and explains how the assembly features are ex-
tracted from binary data. Section III discusses the analysis
methodology and the characterization results on the Intel
Nehalem architecture and section IV demonstrates several
data analysis use cases for guiding architecture parameters
selection. Section V presents related works. Finally, Section VI
summarize the study and discusses future research directions.

II. THE MAQAO LOOP STATIC ANALYZER

A. Introduction

The Modular Assembly Quality Analyzer and Optimizer
(MAQAO) [1] is an application performance analysis frame-
work. MAQAO disassembles, analyzes, and instruments arbi-
trary binaries. It can be extended through a convenient API
for modules.

MAQAO decomposes binaries as a hierarchy of functions,
loops, paths (in loops), basic blocks and instructions. This
hierarchy is produced with the following steps:

1) Disassembling: from the binary code, builds the cor-
responding list of decoded instructions as flexible data
structures.

2) Flow analysis: from the instruction list and function
labels, builds the corresponding call graph (CG) and
control flow graph (CFG).

3) Loop analysis: detects and extracts loops in the CFG.
Loops are organized hierarchically preserving the nest-
ing of loops in the program.

4) Path analysis: detect paths (sequences of basic blocks)
inside each loop. For example, a loop with an if-then[-
else] body has two paths.

MAQAO analyzes the quality of the assembly code for
each path in innermost loops. To assess the quality of as-
sembly code, MAQAO measures how well the assembly code
takes advantage of the hardware resources offered by the
architecture. To evaluate resources usage MAQAO relies on
a machine model. Currently, MAQAO supports the following
Intel micro-architectures: Core 2 (65 and 45 nm), Nehalem
and Sandy Bridge. The Nehalem model used in our study
is built using information (instruction latencies, throughput,
port assignment, µ-op decomposition, etc.) provided by Agner
Fog [3], [4].

B. Architecture

Current implementation of the analysis is decomposed into
two main steps: the in-order pipeline and the out-of-order
execution core. To estimate the number of cycles and derived
metrics, MAQAO considers the slowest step/stage (throughput
oriented). Below we describe each step in details.

1) In-order Pipeline: The goal of the in-order pipeline is to
feed execution units with ready-to-execute micro-operations. It
can be viewed as a macro-pipeline with the following stages:

1) Instruction fetch
2) Instruction predecode (mainly to detect instructions

boundaries)
3) Instruction queue (a FIFO to improve overall through-

put)
4) Instruction decode (instructions are translated into

micro-operations)
5) Micro-operations cache (on Sandy Bridge)
6) Micro-operations queue (another FIFO)
7) ROB-read (read of register operands)

For the in-order pipeline, MAQAO reports the number of
cycles spent in the slowest stage.

2) Out-of-Order Execution Core: On supported architecture
models micro-operations are dispatched in several execution
ports. For example, on Nehalem it is six ports from P0 to
P5, each port providing access to a subset of execution units.
For instance the floating point adder is behind P1. Some
execution units are duplicated like the arithmetic and logic
unit (ALU), present behind P0, P1 and P5 allowing three
integer instructions per cycle. For the out-of-order execution
core, MAQAO displays the maximum number of cycles spent
in the busiest port and in the DIV/SQRT unit (non pipelined
contrary to all other units).

C. Key Metrics

MAQAO extracts large number of dataset-independent char-
acterization key metrics, but as any static performance analysis
tool it can not estimate dynamic hazards like branch mis-
prediction and cache misses. In order to provide time-related
metrics, MAQAO assumes an infinite loop trip. Moreover, they
are reported at a reduced cost, independent of the application
runtime and, from them, an upper bound on performance can
be estimated. The key metric definition depends on the goal,
for example, code optimization or characterization. In order to
demonstrate the global and diversified view we gather metrics
and their combination on a large corpus of loops. Such a com-
plete view opens many interesting opportunities for analysis
and optimization. Below we present the characterization key
metrics:

1) Vectorization: Vectorization metrics are key metrics for
processors with vector units. For computation bounded loops,
the vector length (number of elements per vector register)
is the speedup factor that can be gained by vectorization.
MAQAO provides the following vectorization metrics:

1) The proportion of vector instructions over all vectoriz-
able instructions (already vector or scalar but admitting a
vector equivalent). MAQAO provides a breakdown per
instruction type (add/sub, mul, load, store and other).
This metric is called “vectorization ratio” or “packed
ratio”.



2) For loops featuring both integer and floating-point com-
putations, two metric sets are computed: one considering
only integer instructions and the other one, floating-point
instructions.

3) An estimation of cycles if the loop could be fully vec-
torized, that is if all instructions in the loop body could
be vector instructions (except loop control instructions
and instructions with no vector equivalent).

2) Registers and Stack Usage: At the compiler stage and
during register allocation, if there are not enough available
registers (if all of them are used and the code could benefit
from extra ones), the compiler has to spill/fill lacking registers
from/to memory (x86: in the stack). MAQAO reports the
number of registers used (at least XMM and YMM, in the
release used for experiments presented in this paper) and the
number of references in the stack (relative to the stack or
the frame pointer register). XMM registers, 128 bits wide,
are used by packed (i.e. vector) integer SSE instructions and
scalar or packed FP (floating-point) SSE (or AVX, but only for
scalar) instructions. YMM registers, 256 bits wide, are used
by packed FP (AVX) and packed integer (AVX2) instructions.
Consequently, when targeting SSE, integer and floating-point
vectorized loops use XMM registers for processing data, scalar
loops using XMM registers for floating-point data and general
purpose (x86) registers for integer data. Spill/fill is a potential
bottleneck which can often be fixed at source level. This is
why it is interesting to evaluate its intensity. For not-unrolled
loops that requires X logical registers, all processors having
less than X of them will require spill/fill and could benefit
from having more registers. If a loop that is spilling/filling
registers is unrolled, it could be worth to reduce its unroll
factor.

3) Unroll Factor: Unrolling is one of the most popular
loop optimizations. Without tools, especially when having
only a binary code (and not compiler optimization reports),
it is difficult to know how much a loop were unrolled.
MAQAO can determine, for most cases, the unroll factor of
a (source) loop as soon as a peel or a tail (binary) loop
were generated. Otherwise, MAQAO cannot conclude. Briefly,
MAQAO considers that the unroll factor is the ratio between
the number of operations (and/or moved bytes) in the main
loop and the one in the peel or tail loop. A 4-way vectorized
loop is implicitly unrolled by 4 and reported as unrolled by 4.

4) Dispatch Ports Pressure: MAQAO reports the pressure
(in terms of micro-operations and cycles) on each execution
port allowing to estimate which one will be bottleneck. If ports
of load and store units are the most loaded, the loop is memory
bound. If other ports are the most loaded, the loop is compute
bound if there is no data dependencies and if data fit in the
L1 cache, otherwise it could be memory bound.

III. STATIC CHARACTERIZATION OF LOOPS

This section presents MAQAO static analysis on a
4857 loops corpus. After describing the loop extraction, fil-

tering and analysis methodology, we present the aggregated
statistics for our loop corpus. Then, we evaluate the architec-
ture design choices and compiler efficiency in regards to the
measured assembly metrics.

A. Methodology

MAQAO characteristics depend on the instruction set and
compiler used. This study uses Intel Compiler version 12.1.0
and GCC version 4.5.1 and assumes an Intel Nehalem micro-
architecture. The compilation options used for both compilers
were -g -O3 -mSSE4.2. The -g flag produces debug
information needed by MAQAO to map binary and source
code loops and has no effect on the generated code and
application performance.

The loop corpus was extracted from the set of applications
and benchmarks summarized in Table I. Each application was
compiled using both Intel Compiler and GCC. The binary
compiled with Intel Compiler was profiled using the Intel
Profiler which reports the percentage of run time spent in each
function. In this study, functions whose running time is less
that 1% were filtered out to concentrate on the performance
hot spots. The profiling was performed using Intel Compiler
option --profile-loops=inner on Intel Xeon L5609,
Quad core, 1.86 GHz, 8GB RAM, without frequency scaling.

For this study, we selected traditional performance bench-
marks such as NAS parallel benchmarks, SPEC CPU 2006,
SPEC OMP and the Test Suite for Vectorizing Compilers
(TSVC) [5]. We also selected a set of industrial applications:

• Gadget2 [6] is a cosmological structure formation simu-
lator

• QMC=Chem (QMCChem) [7] applies Quantum Monte
Carlo techniques to Chemistry problems

• PARMA is a set of three computations kernels extracted
from a 3D combustion simulator provided by RECOM,
a Navier-Stokes equation solver provided by Dassault-
Aviation, and a metal forming simulator provided by
GNS. The ITEA2 project ParMA [8] put together these
codes.

• Polaris, a molecular dynamics simulator provided by
CEA

• SPECFEM3D [9], [10], which simulates seismic wave
propagation on arbitrary unstructured hexahedral meshes.

Table I shows for each application the average percentage
of time spent inside the loops analyzed by MAQAO. It shows
that most of the time is spent inside loops, supporting the
loop based analysis proposed in this paper. The only exception
is Gadget2 for which only 27% of the time is captured.
This is because two Gadget2 computation-heavy functions,
hydro evaluate and force treeevaluate, could not be analyzed
by MAQAO. The functions have a set of deeply nested if
blocks, which generate a combinatorial explosion of possible
executions paths. To avoid blowing up the available memory,
MAQAO static analyzer skips loops with a number of pathes



Benchmark % spent in loops (icc) loops: icc loops: gcc
Gadget2 26.70 5 3
NAS-SER 85.56 590 256
PARMA 97.90 65 46
Polaris 87.70 68 64
QMCChem 65.90 106 –
SPEC-CPU-FP 67.62 1458 681
SPEC-CPU-INT 57.66 635 430
SPECFEM3D 93.50 143 –
SPEC-OMP 83.20 1003 555
TSVC 100.00 179 181
Total — 4252 2216

TABLE I
BENCHMARKS AND APPLICATIONS SELECTED FOR THE BINARY LOOP
CORPUS AND AVERAGE TIME PERCENTAGE SPENT IN LOOPS. LOOPS

ANALYZED WITH MAQAO LOOP STATIC ANALYSIS AND PROFILED USING
AUTOMATIC INSTRUMENTATION DONE BY INTEL ICC COMPILER.

greater than a given threshold. This study selects 2 as the
maximum number of pathes, which is enough to analyze most
of the programs in a reasonable amount of time.

MAQAO extracted 4252 loops for binaries compiled with
Intel Compiler and 2216 loops for binaries compiled with
GCC. Table I breaks down the number of loops extracted per
benchmark and compiler.

Optimizing compilers, such as Intel Compiler, often create
multiple binary loops from a single source loop to deal with
corner cases of the optimizations. For example, unrolling a
loop often requires a tail loop to handle the left-over iterations,
because the total iteration is not necessarily a multiple of
the unroll factor. Likewise, compilers may generate multiple
versions of the same loop, e.g. a vectorized binary loop that is
called when the data is vector-aligned and another one that
is called when the data is unaligned. Intel Compiler more
aggressive optimizations make heavy use of unrolling and
multi-versioning, which explains the higher Intel Compiler
loop count in Table I.

For this study to be relevant, we want to concentrate on
“hot” loops that impact performance, therefore we filter out
tail and peel loops that do a negligible number of iterations.
Nevertheless, we keep multi-versioned loops, since it is not
possible to determine statically which one will be called. The
execution time spent inside each binary loop is approximated
by aggregating profiled time for each function and dividing it
equally between all the loops in a function. After removing
peel and tail loops, 4857 main binary loops remain (3103 for
Intel Compiler binaries and 1754 for GCC binaries).

B. Number of Instructions per Loop

The number of instructions is one of the key characteristics
of a loop. The size of the loop defines its complexity in simple
terms and also influences architecture design choices, such as
loop buffer size or instruction cache size. Figure 1 shows that
the majority of the studied binary innermost loops are small.

The loop buffer size on the Intel Nehalem architecture is
28 µ-ops or micro operations. Most of the time, but not

always one instruction is equivalent to one micro opera-
tion on the Intel Nehalem architecture. To convert between
instructions and µ-ops, we use the correction coefficient
E = median Number of µ−ops

Number of Instructions . For our loop corpus the
coefficient E is equal to 0.96. Therefore, the Nehalem loop
buffer can store at most 28 µ − ops/E ' 29 instructions.
Loops larger than 29 instructions may encur a performance
penalty since the loop body exceeds the loop buffer size.

Figure 1 shows that most of the loops fit the Intel Nehalem
loop buffer size except for some programs in the SPEC-CPU-
FP, NAS and Applications groups. In Sandybridge processors
the loop buffer penalty is mitigated thanks to a new µ-
ops cache. We note that all the studied programs fit the
Sandybridge µ-ops cache (1.5K µ-ops).

C. Evaluating Compilers Vectorization

Vector instructions have been successfully used for decades
in vector supercomputers. Instead of operating on single
values, vector instructions load a set of values contiguously
placed in memory and perform arithmetic operations on
vectors constructed with these values. Modern optimizing
compilers provide a broad range of optimizations targeting
vectorization. Figure 2 compares the vectorization of Intel
Compiler and GCC across the benchmarks. A benchmark is
counted as vectorized if 80% of its assembly instructions
are vectorial. Intel Compiler vectorizer is vectorized more
loops than GCC in all the benchmarks. Overall Intel Compiler
vectorizes 39.8% of the loops and GCC vectorizes 12% of the
loops.

S. Maleki et al. [11] recently evaluated vectorizing com-
pilers on different benchmarks, including TSVC. For TSVC
they report that Intel Compiler 12.0 with the same optimization
flags used in this paper, vectorized 61 loops (71.77% of the
total loops). For the same benchmark, our analysis in Figure 2
shows that only 56.3% were vectorized. This discrepancy is
due to the fact that we considered all the TSVC source loops
in our analysis (whereas S. Maleki et al. only consider 85
source loops), including 137 initialization loops that cannot
be vectorized. Also, unlike S. Maleki et al. who evaluated
vectorization of source loops, we count vector binary loops.
By projecting our vectorization measures at the source loop
level, considering that a source loop is vectorized if it produces
at least one vectorial binary loop, we compute that 57 source
loops were vectorized. This figure is close to the 61 loops
found in [11].

D. Number of Independent Memory Streams

We define a stream as a group of load/store instructions
whose target addresses differ only by a constant. In other
words, instructions in the same stream have identical val-
ues for address and index registers but different offsets. A
stream captures load/store instructions accessing the same data
structure. Figure 3 presents an array copy example with two
streams. Each stream in this example consist of two memory



454-calculix
433-milc
482.sphinx3
437-leslie3d
434-zeusmp
436-cactusADM
470-lbm
435-gromacs

SPEC-CPU-FP

1 10 29 100 1000

462-libquantum
400-perlbench
429-mcf
445-gobmk
456-hmmer
401-bzip2
458-sjeng
464-h264ref

Number of Instructions

SPEC-CPU-INT

1 10 29 100 1000

314-mgrid_m
315-mgrid_l
332-ammp_m
312-swim_m
310-wupwise-m
311-wupwise_l
324-apsi_m
328-fma3d_m
329-fma3d_l
330-art_m
331-art_l
316-applu_m

SPEC-OMP

1 10 29 100 1000

is.B
mg.B
ft.B
ep.B
cg.B
sp.B
lu.B
bt.B

NAS

1 10 29 100 1000

gadget2
polaris
dassault
qmcchem
recom
gns
specfem3d

Number of Instructions

Applications

1 10 29 100 1000

Figure 1. Number of instructions per loop. The distribution is weighted by
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the execution time is spent in loops with a number of instructions lower than
the bold bands. Most of the loops fit into the Nehalem loop buffer (dotted
red line), all of them fit into the Sandy Bridge µ-ops cache.
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loop
lea (%rcx,%rcx,1),%edi
inc %ecx
movslq %edi,%rdi
cmp %eax,%ecx

1 mov (%rsi,%rdi,8),%r8
2 mov %r8,0x0(%r13,%rdi,8)
1 mov 0x8(%rsi,%rdi,8),%r9
2 mov %r9,0x8(%r13,%rdi,8)

jb .loop

Figure 3. Simple array copy kernel, unrolled twice. MAQAO detects two
streams: stream 1 reading from the source array, and stream 2 writing to the
target array.

instructions. The first stream is a pair of loads and second
is a pair of stores. In most of the cases, MAQAO is able to
detect the different streams in a binary loop by combining
static analysis and abstract interpretation:

• By analyzing the memory access instructions, MAQAO
determines the addressing mode (fixed address, offset
from a base address, induction variable, etc.) and the
registers involved in the address calculation.

• Then MAQAO simulates the loop execution and tries to
determine the possible address values for each access.

• Access hitting the same memory segment are counted as
a single stream.

• The number of streams is invariant to the unroll factor
of the loop.

This analysis works for most of the simple cases, but has
some limitations in complex kernels that use exotic addressing
patterns.



The number of streams provides a worst case evaluation
when tuning the cache associativity. First, we consider that
associativity problems can only happen between different
streams. Indeed, access in the same stream will not be mapped
to the same associativity set in a reasonable window of
iterations, because the stride between accesses is small enough
(instructions are hitting the same data structure). Therefore,
if the number of streams in a loop is below the cache
associativity, there will be no evictions due to associativity.

The number of streams can also be used to fine-tune the
hardware stream prefetcher. Modern hardware prefetchers can
track different memory streams concurrently. The number of
actual streams reported by MAQAO can be used to decide
how many concurrent streams the prefetcher should track.

The Nehalem architecture provides a 8-way associative L1
data cache, therefore, as shown in Figure 4, Nehalem handles
without problem most of the loops. The Nehalem stream
prefetcher can keep track of 12 forward-stride streams and
4 backward-stride streams, which is enough for 92.7% of
the loop corpus assuming all streams have a forward-stride.
Figure 4 shows that very few execution time is spent in loops
hitting more than 16 simultaneous memory streams.

E. Dispatch Port Pressure

MAQAO estimates the port pressure for each of the micro-
architecture dispatch ports. Each loop can be attributed to one
of the five categories listed below:

• Memory-Saturated (contains three sub categories):
– Memory-Balanced: the loop is memory saturated but

P2 pressure equals the pressure on P3 and P4.
– Load-Saturated: P2 pressure is largest in number of

cycles.
– Store-Saturated: P3 or P4 pressure is largest in

number of cycles.
• Arithmetic-Saturated: P0 or P1 or P5 pressure dominates

in number of cycles.
• Balanced: Pressure on arithmetic ports (P0,P1,P5)

matches pressure on either memory ports (P2, P3, P4).

Figure 5 shows how much time is spent in each category
for the different benchmarks. We note that the pressure on the
load dispatch port is high accross benchmarks, in particular
for applications.

F. Evaluating Register Allocation and Spill Fill

A compiler may generate spill code in different situations:

• It has exhausted the available virtual registers of the
architecture

• It has exhausted the available registers to pass function
input parameters

When a compiler spills a register, it temporarily writes its
content to the stack. Each spill usually translates into two
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Figure 4. Number of streams per loop. The distribution is weighted by
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the execution time is spent in loops with a number of streams lower than the
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memory access: one store to write it to the stack and one
load to read it back later. Spill access are quite fast, since
they usually hit L1, but still more costly than a register
access. There are two obvious ways to reduce spill overhead:
improve the compiler spill allocation heuristics or add more
virtual registers to the architecture. This section is divided
in two parts: first, we will evaluate the compiler register
allocation; second, we will study the impact of adding new
virtual registers to existing architectures.

Among all the main binary loops, only 13.8% with Intel
Compiler and 22% with GCC of the loops have spill access:
both compiler are doing a good job in avoiding spills. Some-
times the compiler is willing to increase the register pressure to
unroll a loop, even if this generates some spill access. Indeed
7.7% with Intel Compiler and 5.99% with GCC of the spilling
loops are unrolled.

Now we evaluate the impact of adding or removing new
virtual registers to an architecture. MAQAO evaluates the
number of different locations in the stack that are accessed
using XMM or x86 instructions. By adding as many XMM
or x86 registers as spill stack locations, we can free a loop
from spill access. Likewise, by reducing the number of register
below the current register usage of a loop, the loop must
spill. Figure 6 shows the proportion of spilling loops under
different register configurations. The slope of the levelplot
is steeper in the horizontal direction, this means that the
impact of adding or removing x86 GP registers is higher. We
attribute this to the fact that x86 registers are used both for
data and address manipulations while XMM are only used
for data. Figure 7 shows that many loops do not use all the
alloted virtual registers. Therefore, for many loops it might be
profitable to increase the unrolling factor potentially improving
their performance. Compiler developers could benefit from the
results of such an analysis and improve the default unroll factor
selection heuristics.
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G. Limitations

Like any other, our approach also has limitations and
has to be applied wisely. Programming languages like Java
and Python which use just-in-time compilation, or autotuners
which generate the code at runtime are out of the scope of our
purely static analysis method. To analyze the Java bytecode
one can use, for example, the Soot framework [12]. Similarly,
server applications or applications that strongly depend on the
dataset, and dramatically change their behavior at runtime, will
be poorly characterized by the static approach. Finally, our
approach examines the application on a new architecture using
a binary generated for another architecture; however the code
generated for this new architecture could be different, because
the compiler heuristics would use another model to transform
the code. Nevertheless, our approach is applicable to many
existing applications, which are compiled once and shipped
everywhere, like applications for Microsoft Windows, legacy



applications, or prebuilt binary packages for GNU/Linux.

IV. SUMMARIZING RESOURCE UTILIZATION

This section discusses how the static analysis presented in
section III can be used to select optimal architecture parame-
ters. The study considers three key architectural features: the
loop buffer size, the number of simultaneous streams handled
by the hardware prefetcher, and the number of vector registers.
To estimate application stress on the three hardware param-
eters, we will consider respectively three MAQAO metrics:
the number of instructions per loop, the number of memory
streams, and the number of used XMM registers.

Table II summarizes the static analysis of section III for Intel
Compiler compiled programs. Table II presents the median
of the three MAQAO metrics for each program. Programs
are grouped by benchmark suite. The gray lines compute
the median metrics for all the programs belonging to the
same benchmark suite. The metrics for the applications set
are within the benchmark’s metrics range showing that the
benchmarks are representative of the group of applications that
were selected.

To avoid loop buffer penalties, the loop buffer size should
accommodate most of the program’s loops. First column in
Table II presents the median loop’s size in instructions. One
option to estimate the loop buffer size is taking the maximum
loop size across all benchmarks, guaranteeing that at least half
of the loops of every application fit. This option is impractical
because of outliers: some programs, such as 470-lbm, have
large loops that would require large and costly loop buffers.
Instead, we propose to select a value satisfying 90% of the
programs, that is to say we take the 0.9 quantile of the values
in the first column.

The number of concurrent prefetcher streams can be esti-
mated with the number of independent memory streams in
Table II second column. Likewise, to estimate the number
of vector registers, we look at the number of registers used
across programs in Table II third column. To select good initial
candidates we consider, as before, the 0.9 quantile.

We separate our programs into two different sets: the first
contains the industrial applications in our corpus, the other
contains the benchmark suites (SPEC, SPEC OMP, NAS, and
TSVC). Table III presents the estimated values for each set.
The selected loop buffer size is comparable for applications
(43.50) and benchmarks (41.40). The selected buffer is a bit
larger than for the Nehalem micro-architecture, suggesting that
doubling the loop buffer size could improve the performance
of future architectures. The suggested number of prefetcher
stream is 6.9 for benchmarks and 17 for applications. The
Nehalem prefetcher handles up to 16 simultaneous memory
streams, and is therefore adequate for our set of programs.
The number of vector registers suggested is around 8 for both
applications and benchmarks. This value confirms the analysis
of section III-F that suggest that there are plenty of potential
candidates for higher unroll factor.

# Instructions # Streams # XMM Registers
Apps 11.00 8.50 2.00

dassault 18.50 8.50 4.00
gadget2 8.00 17.00 0.00

gns 81.00 13.00 11.50
polaris 15.50 4.00 3.00

qmcchem 6.00 2.00 1.00
recom 11.00 1.00 2.00

specfem3d 7.00 17.00 2.00
NAS 13.50 2.50 2.00
bt.B 24.00 58.00 8.00
cg.B 8.50 2.00 2.00
ep.B 16.00 2.00 1.00
ft.B 9.00 3.00 2.00
is.B 7.00 3.50 0.00
lu.B 61.00 9.00 11.00

mg.B 11.00 2.00 2.00
sp.B 29.00 2.00 11.00

SPEC-CPU-FP 24.00 3.50 2.25
433-milc 29.00 2.00 2.00

434-zeusmp 35.00 3.00 9.00
435-gromacs 19.00 4.00 2.50

436-cactusADM 50.00 6.00 7.00
437-leslie3d 7.00 1.00 1.00
454-calculix 12.00 3.00 0.00

470-lbm 273.50 9.00 16.00
482.sphinx3 12.00 5.00 0.00

SPEC-CPU-INT 9.50 3.50 0.00
400-perlbench 10.00 5.00 0.00

401-bzip2 15.00 6.00 0.00
429-mcf 8.00 1.00 0.00

445-gobmk 9.00 1.00 0.00
456-hmmer 14.00 6.00 0.00

458-sjeng 11.00 1.00 0.00
462-libquantum 8.00 4.00 0.00

464-h264ref 6.00 3.00 0.00
SPEC-OMP 16.50 2.50 5.25

310-wupwise-m 18.00 2.00 6.00
312-swim m 17.00 6.50 3.00
314-mgrid m 33.00 7.00 8.00
316-applu m 43.00 3.00 7.00

324-apsi m 16.00 3.00 5.00
328-fma3d m 11.00 1.00 1.00

330-art m 12.00 2.00 2.00
332-ammp m 16.00 1.50 5.50

TSVC 11.00 5.00 2.00

TABLE II
MEDIAN VALUES OF THE STATIC ANALYSIS METRICS FOR EVERY STUDIED

PROGRAMS

Loop buffer size #Prefetcher Streams #Vector Registers
Apps 43.50 17.00 7.00

Benchs 41.40 6.90 8.80

TABLE III
SELECTED ARCHITECTURE PARAMETERS

Our method allows to measure the stress of a set of
benchmarks for some key architecture parameters based on
assembly metrics. One disadvantage of the method, is that
the metrics may be too tied to the compiler. For example,
the number of XMM registers over GCC compiled programs
is lower than for Intel Compiler compiled programs because
GCC vectorizes less loops. To factor out the compiler effect,
we would need compiler-independent metrics, measured at the
source level. The advantage of our approach is that it measures



directly what is executed on the processor, unlike source level
metrics.

V. RELATED WORK

ROSE is a well known framework for performing data
flow and static analysis. Shalf, E., et al. [13] used ROSE to
analyse an iterative co-design process focusing on exascale
applications.

MAO is an extensible micro-architectural assembly to as-
sembly optimizer [14]. Similar to MAQAO it operates at a low
micro-architectural level, but unlike MAQAO it is not able
to decompile the binary and requires the assembly code to
be manually extracted. MAO focuses mainly on optimization:
optimization passes are designed in the spirit of compiler op-
timization passes and operate mostly on the programs control-
flow graph. MAO executes the program to evaluate the impact
of each optimization pass, which is costly compared to the
MAQAO pure static approach.

Intel Architecture Code Analyzer (IACA) is a performance
static analysis tool which operates on a binary file and
estimates port pressure and cycles taking into account data
dependencies. Unlike MAQAO, which automatically analyzes
all innermost loops belonging to given functions, IACA needs
to recompile the application to delimit the section of code
to analyze. IACA assumes an optimal front-end throughput
(four uops per cycle) contrary to MAQAO which simulates it,
allowing the latter to detect bottlenecks lying there. IACA dis-
plays only low-level metrics (cycles, dispatch) on instructions
sequences while MAQAO can provide high-level metrics on
source level loops, breakdown of a source loop into binary
loops and unroll factor, and can help an application developer
to optimize his code by providing him a threefold report: what
are the detected performance issues, how much speedup can
be expected by fixing them and how to fix them.

Traditionally, hardware architects use simulators to model
and explore the design space. Unfortunately, simulating the
whole application is costly and must be redone for every archi-
tecture generation. Focusing only on performance critical parts
reduces the required simulation time. Several approaches [15],
[16] extract synthetic benchmarks from existing benchmarks or
applications that preserve a large set of performance features
of the original code. These synthetic benchmarks reduce simu-
lation time and enable profiling against proprietary workloads
without sharing the code.

Phansalkar et al. [17] study the redundancy inside SPEC
CPU2006 by using Principal Components Analysis on dy-
namic features of the benchmarks, they show that a reduced
set of programs can capture most of the information of the
full suite.

Marin and Mellor-Crummey [18] use static and dynamic
analysis to build architecture-independent models for scientific
kernels. Using these models they predict application perfor-
mance and L1, L2, and TLB cache miss counts. Unlike our

study Marin and Mellor-Crummey focus on memory issues of
the memory-bound NAS benchmarks.

VI. CONCLUSION

In this paper we applied MAQAO loop static analysis on
a large set of applications, concentrating on the most relevant
MAQAO low-level metrics. Such a quantitative analysis pro-
vides insights to hardware architects and compiler designers.
The analysis quantifies how a large corpus of assembly loops
stresses various parts of modern hardware and how well are
the compiler heuristics tuned for a target architecture. We
weighted the metrics with time profiling information so that
our analysis accurately describes a realistic execution of the
programs.

The low cost of the static analysis allowed us to exam-
ine more than 4857 loops. We showed that the analysis of
the number of instructions per loop and of the number of
independent memory streams is important to tune hardware
parameters such as the loop buffer or the hardware prefetcher.
We proposed a simple strategy to automatically select reason-
able values for these parameters given a set of benchmarks.
For example, our number of instruction analysis shows that
doubling the Nehalem loop buffer size could improve many
benchmarks, whereas the Sandybridge µ-ops cache satisfies all
the benchmarks.

Finally, we evaluated Intel Compiler and GCC register
allocators and vectorizers. Intel compiler and GCC register
allocation heuristics are comparable in terms of number of
spilling loops. On the other hand, Intel compiler vectorizes
39.8% of the loops, whereas GCC vectorizes 12% only.
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