
Using MAQAO to Analyse and Optimise an
Application

Cédric Valensi, William Jalby, Mathieu Tribalat, Emmanuel Oseret, Salah Ibnamar, Kevin Camus
Exascale Computing Research

University of Versailles Saint Quentin en Yvelines
Versailles, France

Abstract—One of the major issues in the performance analysis
of HPC codes is the difficulty to fully and accurately characterize
the behaviour of an application. In particular, it is essential to
precisely pinpoint bottlenecks and their true causes. Additionally,
providing an estimation of the possible gain obtained after fixing
a particular bottleneck would surely allow for a more thorough
choice of the optimizations to apply or avoid. In this paper, we
present MAQAO, a performance analysis framework aiming at
providing a comprehensive human-friendly view of performance
issues and also guide the user’s optimization efforts on the most
promising performance bottlenecks.

I. INTRODUCTION

The evolution of the recent HPC processors has shown
an increase both in terms of number of components (larger
multi-core/many-cores) and in terms of mechanism complexity
(advanced out of order, multilevel memory hierarchies). These
trends make the task of application optimization more and
more complex: not only the sources of potential performance
loss have become more diverse, but several of them can
occur simultaneously and with different impacts. Additionally,
sorting out the sources from the consequences of performance
losses, therefore identifying the correct issues to be addressed,
becomes increasingly difficult.

When looking for potential improvements, code developers
first need to identify the critical performance issues to be
tackled, and second, to know how much performance gain can
be obtained after applying a specific optimization. Developers
will mostly be interested in optimizing the code for different
data sets and for different configurations (number of cores,
nodes, ...), therefore needing to aggregate performance views
across different cases to study the performance impact and
select the correct trade off. Unfortunately, this simple aggre-
gation capacity is missing in most performance tools. Also,
these tools usually provide results as a collection of metrics
which require expertise in optimisation to correctly interpret.

In this paper, we present the MAQAO performance analysis
framework and its performance view aggregator ONE View,
which aims at precisely helping code developers in selecting,
with some reasonable confidence, the most profitable optimiza-
tions. ONE View allows to automatize the analysis process and
aggregate the result from different and complementary analysis
modules into a set of reports providing a full assessment of
the application performance behaviour and evaluations of the
potential performance gains of code optimisations.

II. MAQAO PERFORMANCE ANALYSIS FRAMEWORK

MAQAO (Modular Assembly Quality Analyzer and Opti-
mizer) 1 is a performance analysis and optimisation framework
operating at binary level, with a focus on core performance.
Its main goal is to guide application developers along the
optimization process through synthetic reports and hints. The
framework mixes both dynamic and static analyses based on
its ability to reconstruct high level structures such as functions
and loops from an application binary. Since MAQAO operates
at binary level, it is agnostic with regard to the language used
in the source code and does not require recompiling the ap-
plication to perform analyses. MAQAO has been successfully
used to optimise academic and industrial codes.

The MAQAO modules rely on the internal representation
of the binary to perform distinct and complementary analyses,
which include the following:

• Profiling through two modules, LProf, a sampling-based
lightweight profiler offering results at both function and
loop levels, and VProf, an instrumentation-based value
profiler allowing to retrieve dynamic metrics for each
instance of a loop.

• Static analysis through CQA [3], a module assessing
the quality of the code generated by the compiler and
producing a set of reports describing potential issues,
estimations of the gain if fixed, and hints on how to
achieve it.

• Differential analysis through DECAN [1], a module that
modifies the application binary code to evaluate the
impact of families of instructions on global performance.

III. ONE VIEW

ONE View is a MAQAO module in charge of launching
all of the other performance modules according to a coherent
workflow [2], formatting their output, and building the various
performance views in a report available in the HTML, XLSX
or text format. ONE View offers three levels of reporting,
with increasing levels of complexity and associated overhead,
each report level including the results of the levels below it.
Another mode of operation allows ONE View to execute the
application with different parallel configurations in order to
estimate its scalability. The reports generated by ONE View
are structured along a set of complementary views.

1www.maqao.org



A. Global Metrics

This view presents an estimation of the overall quality of
the program with regard to performance and the possible im-
provements to be expected. It includes a set of global metrics
and graphs presenting the speed-ups expected if performing
optimisations suggested by CQA and DECAN analyses.

The global metrics aim at giving an overall view of the qual-
ity of the code. They include timings of the application and the
percentage of it spent in loops, a list of standard optimisation
options that were missed when compiling the application, an
estimation of the complexity of the flow (average number of
paths in loops), an estimation of the regularity of accesses to
array elements across the whole application, and a series of
speed-up predictions if a given optimisation could be applied
to every loop in the file, along with the number of loops to
optimise to obtain 80% of this speed-up.

Fig. 1. Example of ONE View global metrics. Satisfactory values are
highlighted in green, unsatisfactory ones in orange or red.

Figure 1 presents an example of global metrics. In this
case, the expected speedups if cleaning or vectorising the code
are low. Conversely, the speedup expected for improving data
caching is significantly higher, and would require only 3 loops
to be reached at 80%. The average number of paths by loop is
1.4, meaning some improvements could also be expected by
simplifying the control flow.

Figure 2 presents an example of a speed-up prediction in
the case of perfect data blocking (all data in L1 cache), which
shows that a significant improvement can be expected by
optimising the data accesses of only 3 loops.

B. Functions and Loop Summary

These views focus on the results gathered from the LProf
profiling module. A first view includes a categorization display
of the time spent in the application or its external dependencies
(MPI, OpenMP, memory management, I/O, ...) and a break-
down of the relative coverage of each loop and function of
the application. A second, more detailed view, displays the
coverage of each function and of the loops they contain, along
with their load distribution across the threads, and the call
chains leading to their invocation.

Fig. 2. Example of a projected speed-up. The vertical y-axis displays the
cumulative speedup on the whole application which could be obtained by
perfect blocking. The horizontal x-axis lists the loops by their decreasing
impact in terms of performance gains.

C. Loop Reports

The loop reports describe the performance issues encoun-
tered in a given loop, along with hints on how to address
them. These hints may advise to modify the compilation chain
through flags or directives, or the code to avoid using some
instructions, interchange loops, or use specialised functions.
These reports also include all metrics gathered by MAQAO
along with an estimation of their reliability.

D. Scalability Reports

The scalability views display for each parallel run the speed-
up of the application compared to the reference run, and
its efficiency, which is the ratio between the speed-up and
the ideal speed-up defined as the speed-up expected given
the number of threads compared to the reference run. This
information is also available at the function and loop levels.

IV. CONCLUSION AND FUTURE WORKS

MAQAO aggregates a series of metrics into reports pre-
senting a global view of the application performance, along
with hints on how to improve it and an estimation of the
corresponding gain. Future works will focus on following the
evolution of architectures to provide up-to-date information,
expanding the analysis capabilities of MAQAO by adding
new modules focusing on other aspects of the performance
analysis process and further increasing its usability for non
performance optimisation experts.

REFERENCES

[1] S. Koliaı̈, Z. Bendifallah, M. Tribalat, C. Valensi, J. Acquaviva and W.
Jalby,: Quantifying Performance Bottleneck Cost Through Differential
Analysis. 27th International ACM Conference on International Confer-
ence on Supercomputing, ICS 2013, Eugene, Oregon, USA.

[2] Z. Bendifallah, W. Jalby, J. Noudohouenou, E. Oseret, V. Palomares and
A. Charif-Rubial: PAMDA: Performance Assessment Using MAQAO
Toolset and Differential Analysis. 7th International Workshop on Parallel
Tools for High Performance Computing, September 2013, ZIH, Dresden,
Germany.

[3] E. Oseret, A Charif-Rubial, J. Noudohouenou, W. Jalby, G. Lartigue:
CQA: A code quality analyzer tool at binary level. 21st International
Conference on High Performance Computing, HiPC 2014, Goa, India,
December 17-20, 2014.


