
Exploring Application Performance: a New Tool For a Static/Dynamic Approach

Lamia Djoudi
�

Denis Barthou
�

Patrick Carribault
�����

Christophe Lemuet
�

Jean-Thomas Acquaviva
�

William Jalby
�

�

LRC ITACA, CEA/DAM and Université de Versailles Saint-Quentin, France
�

PRiSM, Université de Versailles Saint-Quentin, France
�

Bull SA, Les Clayes sous Bois, France

Abstract

Application performance is highly dependent upon the
quality of assembly code produced by the compiler, this
trend is further reinforced on EPIC architecture. There-
fore assessing precisely the quality of the generated code
is essential to deliver high performance. Nowadays perfor-
mance troubleshooting is mostly tackled by using hardware
counters and dynamic profiling. In this paper we propose
a tool for performing analyses of assembly code (including
some runtime capabilities). We advocate that such a tool
can be combined with classical hardware counter analysis
to achieve similar results at much lower cost and better ac-
curacy than an approach relying only on hardware perfor-
mance counters.

Among the distinctive key advantages that our tool
MAQAO offers: versatility (user can specify his own analy-
ses) and precise and fast diagnosis capabilities. These ca-
pabilities enable a better control of an optimization process
and enhance the productivity of programmers in the process
of code tuning.

Performance tuning driven by MAQAO on two real codes
allows substantial gains in execution time (up to a factor
of 2). Optimization strategies and potential hotspots are
highlighted by a joint usage of static and dynamic analyses.
Relying on MAQAO allows to leverage the somehow com-
plex task of understanding performance bottlenecks. Clear
details of this process are provided for both codes.

1 Introduction
Quality of the code produced by the compiler is essen-

tial to get high performance. In the old CISC days, qual-
ity could be simply assessed by counting the number of in-
structions. Nowadays, with the recent generation of micro-
processors, such simple metrics are no longer valid. First
of all, caches have introduced data locality as a key perfor-
mance metric. Code quality also results from the appropri-
ate use of instructions such as branches, fused multiply add

-fma-, predicated instructions or prefetches. Finally, some
low level architecture mechanisms such as bank conflicts or
load/store queue aliasing have an impact on execution time
and have to be taken into account by code generators.

In fact, on modern microprocessors, taking into account
all the architectural aspects is critical to get high perfor-
mance. For example on Itanium systems, gcc is very often
outperformed by Intel C Compiler (icc) because icc con-
siders all of the features offered by the Itanium 2 [19, 20].
However this performance search comes at the expense of
code complexity and stability: the code generated is diffi-
cult to analyze and optimizations are often unstable, mean-
ing that a slight modification on the source code or on
some input values, may change drastically the overall per-
formance. In particular, most of the optimization process
relies on heuristics whose exact behaviors are hard to pre-
dict and sometimes, turning on all of the optimization flags
results in a code which is slower than just turning a limited
set of optimizations. Therefore, it is critical to be able to
analyze the quality of the code produced.

Performance analysis has made tremendous progress
with the appearance of low level hardware counters capa-
ble of tracking various events. Such counters are extremely
helpful to locate performance bottlenecks: for example poor
data locality automatically generates high cache miss ratio
which can be easily captured. However dynamic behavior
analysis does not allow to discover all of the potential per-
formance problems. For example, missed standard opti-
mizations such as constant propagation or common subex-
pression elimination are much more easily detected on the
assembly code than by hardware performance counters.

Consequently we propose a new tool, named MAQAO
(Modular Assembly Quality Analyzer and Optimizer), able
to tackle what we saw as the real problem: inspec-
tion/analysis of assembly code. Our goals can be summa-
rized by the following:

� Intelligent navigation and flexible automated analysis
(either predefined or user defined) of assembly code;

� Quality assessment of the code generated and detec-

1

tion of potential inefficiencies of the assembly code ei-
ther statically or dynamically (value profiling);

� Providing hints and guidelines to drive optimization
process;

� Build an evolving database of known performance is-
sues on the target architecture (currently Itanium 2).

The major contributions of MAQAO are:
� To provide the user with a tool for performing flexi-
ble quality analysis and a methodology on code per-
formance. Quality assessment relies on advanced pat-
tern matching where patterns have been identified ei-
ther by micro-benchmarking techniques [3] or by pre-
vious expertise. This is addressing a problem where
currently most of the optimization knowledge is infor-
mally stored (if not only in the programmer’s brain).
This productivity issue is not handled by other tools.

� To store both high level code structures (loops, CFG)
and low level profiling information (hardware coun-
ters, value profiling) in a database to perform requests
on it. This is an important and novel aspect of code
analysis. MAQAO therefore proposes the first build-
ing blocks of an assembly optimizer/analyzer.

� To provide value profiling for addressing the link
(missing in other tools) between observed behavior on
the processor and software behavior.

EPIC architecture is the first target for MAQAO due to
its in-order execution and explicit parallelism: there is no
hardware mechanism to smooth scheduling problems, in-
struction selection and so on. Still MAQAO could be ported
to another architecture. MAQAO parses assembly files and
generates a structured representation. The structures built
are the call graph, the control flow graph, the loop struc-
tures and the dependence graph (for registers). They are
inserted into an SQL database that is later used for static
analysis. Queries to the database can detect fma or com-
pute pipelined loop latencies. Structuring assembly code is
not only useful for queries but also enables to modify it. A
first application of this ability is insertion of performance
probes (instrumentation) directly at the assembly level for
dynamic analysis.

Section 2 provides a motivating example advocating the
use of static analysis compared to dynamic hardware coun-
ters. Section 3 gives an overview of various related per-
formance analysis tools. Section 4 describes the MAQAO
static analysis phase, how the assembly code is structured
and how pattern detection can be performed. Section 5 de-
tails how to compare performance bounds to the code pro-
duced by the compiler. Section 6 presents how code instru-
mentation is handled by MAQAO. Section 7 provides an
overview of the methodology used with MAQAO to opti-
mize codes. Section 8 illustrates how the diagnostics pro-
duced byMAQAO helped us to optimize two real life codes:

Loop trip 2 4 8 16 32 64
CPU Cycle 87 150 278 548 1065 2101
Inst. issued 304 542 1018 1970 3874 7682

F. Ops issued 68 136 272 544 1088 2176
Stall Cycle 18 36 72 157 307 607

Stall % 21% 24% 26% 29% 29% 29%

Table 1. Hardware counter measurements for
FFTW 4 codelet. Stall cycle is fairly limited, and
IPC seems satisfying.

fmas 28
fa 16
fm 6
loads 14
stores 8
branch 1

instructions/iteration 120
cycles/iteration 28

swp no swp
stalls 5

Table 2. Static analysis of instructions in the FFTW
4 loop. Numbers are for one iteration. fma corre-
sponds to the total number of floating point mul-
tiply, add and multiply add while fa (resp. fm)
corresponds to the real number of simple floating
point add (resp. multiply). Stalls are predicted by
compiler and are given through comment lines.

a scientific code called TERA, and SHA-0 attack, a crypt-
analysis application. Finally, conclusion and perspectives
are provided in Section 9.

2 Motivating example

FFTW (Fastest Fourier Transform of the West) [23] is a
highly tuned version of the FFT. Most of the computation
occurs within small code pieces named codelet (currently
fftw_twiddle). A generator is able to produce automatically
different flavors of codelets but all of the codelets are gener-
ated in C, thus performance depends on the compiler. Try-
ing to push performance beyond the best found compiler
options (-O3 -fno-alias), starts with a close examina-
tion of hardware counters.

Results from Table 1 depict a code with a very good IPC
and a rather limited fraction of stall cycles. However, this
does not expose the code bloating problem, i.e. a question
remains unanswered: among all the issued instructions, how
many are essential/useful instructions and how far is this
code from an optimal one? A glance at some static met-
ric collected via MAQAO on the assembly code depicts the
following picture (see Table 2).

Dynamic and static results match for the number of in-
structions issued: ����� instructions are issued in two itera-
tions, ����� for four iterations, corresponding to an average
of 	
��� instructions issued per iteration plus ��� instructions
of overhead (the same applies for cpu cycles).

Notice that Itanium hardware counters are able to de-
tect if an fma instruction corresponds to a real fused mul-
tiply add or to a simple multiply or simple add. Therefore
the 6 real fused operations are reported by the hardware as
being 12 FP_OPS, while the 22 remaining operations are
just counted once. Hence for every loop trip counters report
12+22 = 34 floating point operations which corresponds ex-
actly to the value found by MAQAO.

Stalls are given statically as the difference between the
instructions issues and the cycles prediction provided by the
compiler. In our case (simple code without branch), stalls
are stemming mostly from dependencies (load to use laten-
cies, floating point latencies . . .). The compiler predicts �
stall cycles per iteration while the hardware counter mea-
sured � stall cycles per iteration. If we add this � extra cy-
cles to the number of cycles estimated by the compiler, this
gives �� cycles per iteration which is very close to the ��� cy-
cles measured. Therefore, optimizing the code by reducing
the number of stalls would bring at best a 20% speed-up.

The performance issue is somewhere else: inspection of
assembly code shows that the loop is neither pipelined nor
unrolled (this is checked by comparing the number of real
multiplications in the assembly and in the source). Further-
more, MAQAO reveals that the ��� fmas could be executed
in 	�� cycles and that the loads/store instructions could be
executed in � cycles, therefore the lower bound (due to re-
source constraints) is 	�� cycles per iteration which is far
away from the ��� cycles per iteration (a potential factor of 2
is achievable). Therefore, the instruction schedule is fairly
poor.

A simple analysis of the source code indicates that
the iterations are independent. However, the source code
contains read and write array accesses of the form ����	
� ,
����������� . Not knowing that ����� is strictly positive forces the
compiler to have a very conservative schedule. Following
these deductions, using the classic versioning (or specializa-
tion) optimization for the given loop trip allows to provide
the compiler with the critical information that ����� value is
never set to � . This time, the compiler generates a much
more efficient code than exposed in Table 1 (backed by the
static analysis), results are detailed in Table 3. This time,
the compiler generates a far better schedule and pipelines
the loop. Note that the speed-up of two is nearly reached
for large enough loop trip counts.

To sum up, a tool assessing assembly code quality is es-
sential to produce high-performance code. Indeed, even
state-of-the-art compilers do generate poor quality assem-
bly from real codes and this is difficult to evaluate using a

loop trip 2 4 8 16 32 64
CPU Cycle 65 109 229 339 620 1174

Speed-up vs Table 1 1.33 1.37 1.21 1.61 1.71 1.78
Inst. issued 258 492 939 1448 2776 5432

F. OPs issued 68 136 272 544 1088 2176
Stall Cycle 10 8 44 52 119 215

Stall % 15% 7% 19% 15% 19% 18%

Table 3. Hardware counter measurements for
FFTW 4 codelet. Improvement is greater than the
number of stall cycle from the generic version.

pure dynamic approach. A stage of static analysis delivers
interesting results, and is a shortcut to optimizations w.r.t.
the clear but long way paved by hardware counters analy-
sis.

3 Related Works

Most of the performance analysis tools/toolkits can be
dispatched among two main classes. The first one is focused
on the exploitation of hardware performance counters while
the second relies on code instrumentation or even transfor-
mation. Our approach is a cross-over: assembly code in-
spection is done statically, data profiling is done using code
instrumentation and hardware counters fit their traditional
role of hotspot detection.

Hardware monitors are extremely helpful for perfor-
mance tuning, they are the backbone of analysis tools like
VTune [5], Caliper [18], Cprof [17]. Their usage is so
widespread that an API gets standardized to describe their
access [11]. Nevertheless, hardware counters are limited
to the dynamic description of an application and this pic-
ture needs to be correlated with other metrics. For instance,
from the hardware counter point of view, code bloating (or
even dead code) filling up functional units and leading to
high IPC is seen as a desirable behavior.

On the static side, Salto [7] is a framework dedicated
to the implementation of complex assembly code transfor-
mations. After being parsed, assembly code is seen as a
collection of C++ objects plugged in a user-developed ap-
plication. Salto is more a toolkit than a tool and could
appear as a back-end of MAQAO diagnosis chain: once
a problem is identified by MAQAO, some transformations
have to be applied by SALTO to solve this problem. DPCL
[24] (Dynamic Probe Class Library) is a set of C++ classes
from IBM originally based on Dyninst [25]. The purpose
is to help developers to support dynamic instrumentation of
parallel jobs. Probes can be inserted in a running binary
to check the hardware counters or cycles for any function
of the monitored code. Even if dynamic instrumentation is
very appealing, DPCL does not include any notion of code
inspection.

ATOM [4] (for Alpha assembly) and Pin [10] (for Intel
architectures assembly) instrument assembly codes (or even
binary for Pin) in a way that when specific instructions are
executed, they are caught and user defined instrumentation
routines are executed. While being very useful Atom and
Pin are more oriented toward prospective architecture sim-
ulation than code performance analysis.
HPCview [8] and Finesse [9] (this one being more

oriented toward parallelization) address the analysis prob-
lem from static and dynamic sides. HPCview tackles the
same problem as MAQAO: the complex interaction be-
tween source code, assembly, performance and hardware
monitors. HPCview presents a well designed GUI based
on web browser, displaying simultaneous views of source,
assembly code and dynamic information. This interface is
connected to a database storing for each statement of the as-
sembly code a summary of its dynamic information. Based
on control flow graph and a tool named bloop, HPCview
builds abstracted representation of code loop structures (us-
ing an XML interface). Some important differences should
be underscored: while a database is embedded in the appli-
cation, end-user has only limited opportunity to explore the
code and define new queries. HPCview also lacks value
profiling which can lead to powerful, yet simple to imple-
ment optimizations such as code versioning.

4 Static Analysis

MAQAO parses any assembly code produced by icc and
performs several static analyses on this code. As an impor-
tant feature of the tool, the user has the possibility to widen
the range of analyses and to quickly prototype new ones
with a scripting module. From code parsing to loop detec-
tion, all analysis results are stored into a database associated
with the analyzed program. This process is split in different
phases detailed in this section.

4.1 Parsing Assembly

The instruction set reference of the Itanium Software De-
veloper’s Manual [21] describes IA64 instructions in more
than 230 pages. We designed a script parsing automatically
the manual in pdf form. This script generates the assembly
code parser used by MAQAO, and with some light modi-
fications, provided MAQAO front-end. Notice this process
could be easily adapted to other architectures.

Instructions and assembly directives are stored in the
database. Note that the generation of the original code from
the data stored in the database is still possible. MAQAO has
successfully parsed/analyzed codes of more than 250,000
lines in a few seconds on a desktop machine, a Pentium4
1.8GHz with 256MB.

The compiler provides some information concerning ex-
ecution latencies (for each instruction issue), execution
statistics for basic blocks (obtained after profiling) and gives

the link between assembly and source lines. Although the
parser does not complain if they are missing, all these val-
ues are also stored in the database.

4.2 Extracting the Structure from the Assembly

This section details the different analyses building the
foundations for more complex ones. These analyses hi-
erarchically restructure the assembly code, from functions
down to basic blocks and bundles. An interactive interface
provides access to these structures for the user (See Figure 1
for a snapshot), as well as a display of source and assembly
codes and a scripting window for the tuning of new analysis.
A batch mode also enables automatic analyses.

Figure 1. MAQAO used on a daxpy routine. CFG
is displayed, the selected basic block corresponds
to the highlighted assembly code on the main win-
dow. Analyses can be selected from the above
menus. Notice that for a simple daxpy function,
the compiler has generated a complex control
flow graph with several versions depending on the
alignment of data on 16B boundaries.

The structure hierarchy of the assembly code is the fol-
lowing:

� Call Graph: this structure slices the code into differ-
ent functions and shows how they interact each other.
For a given function, the number of calls to another
function is annotated on the edge going from the caller
to the callee. The graph is represented with GraphViz
[6], a toolkit ensuring a layout of the graph minimizing
the intersection of edges, making it more manageable.
Each node selection triggers the display of the selected
function control flow graph.

� Control Flow Graph: the control flow graph struc-
tures basic blocks within a function, showing possi-
ble control paths. This information is important for
loop detection and provides a quick assessment of

the function complexity. Selecting a node highlights
the corresponding assembly code and positions the
source code to matching lines. Likewise, selecting
assembly or source code highlights the corresponding
nodes. Notice that temporal pattern can be expressed
in MAQAO, since the CFG and the sequential order
inside basic blocks are kept in the database. This al-
low to express a relation of precedence between two
instructions.

� Dependence graph: dependences are computed be-
tween statements w.r.t. registers (no memory location
dependences) with a reaching definition analysis. This
analysis is useful to validate code transformation and
optimizations (still on-going work).

� Loops: the loops determine basic blocks that are likely
to be the most executed. Hence, loops are a legitimate
focus for analysis and optimization.

� Bundles and Basic Blocks: they are given by the com-
piler and are expected to be well-formed. Basic blocks
are provided through comment lines but they could be
computed if necessary.

Moreover, from the interface of MAQAO and thanks to
the debugging information provided by the compiler, the
user can navigate directly to and from assembly and source
codes.

4.3 Implemented Analysis and Extensions

One of the key features of MAQAO is the possibility
to express new analyses using scripts. This offers a wider
range of analyses when standard statistics are not enough.
Therefore, a knowledge base of interesting analyses can
be built up from the experience of multiple users or from
micro-benchmarking techniques[3]. The results of micro-
benchmarks are patterns of code that do not perform well
due to possible data alignment issues, conflicting memory
banks or other memory access flaws.

Scripting allows to experiment and tune new analyses
with ease, and extends the tool to the advantage of other
users. The chosen script language, SQL, perfectly fits the
need of accessing code structures and results of previous
analyses. However once an analysis has been prototyped
in SQL and tested, it can be encoded then in C for better
performance.

Scripted analyses for MAQAO are inserted into menus
with a simple configuration file. The analyses included in
MAQAO can be sorted out in the following categories:

� Simple statistics: number of nops, number of bun-
dles with multi-way branches or number of loops.
This gathering can be executed on a part of the code
structure (a particular function or some blocks), which
would not have been possible with a simple grep.
Moreover, using the optimistic cycle evaluation pro-

vided by the compiler for each instruction, it is possi-
ble to have a static performance evaluation of impor-
tant loops.

� Histograms: histogram of basic block sizes in a func-
tion or histogram of the IPC in a function or block.
The histogram of IPC shows the number of non-nop
instructions scheduled at the same issue. As the com-
piler estimates the number of times each block is exe-
cuted (using profiling), this helps to single out the lines
of code where the IPC should be improved.

� Code pattern detection: pattern detection is a valu-
able tool in order to detect deficient sequences of
code. Simple examples include the detection of miss-
ing prefetches in loops, or missing fma. For address
computations, a pattern composed by setf/getf in-
structions indicates a conversion to floats, usually to
perform a multiplication. More intricate patterns can
be expressed, containingmore than one instruction and
with some interrelations with the underlying structure:
for instance useless spill/fill sequences are sometimes
generated by the compiler (no use of the variable be-
tween fill and spill, see Section 8.2 for an example).
This spill/fill pattern can be either generated explicitly
(with ld.fill and st.spill instructions) or im-
plicitly (with a ld/st on the stack).

� Compiler optimization detection: MAQAO can find
out if some optimizations were performed by the com-
piler. For instance, it detects pipelined loops and the
parameters of the pipeline. For unrolled loops, hints
can be given by MAQAO concerning the unroll fac-
tor, based on the match between source and assembly
lines and the comparison of loads/stores in both codes.
But due to the possible compiler optimizations, a reli-
able unroll factor is difficult to capture. Loop blocking,
IPO and so on are not yet supported, but notice that
for some codes, such as scientific ones, characterizing
loop optimizations often boils down to the unrolling
factor or pipeline depth.

Figure 2 shows two examples of script. Figure 2.a is used
to detect the number of setf in the selected function. This
instruction frequently appears in poor performance address
computation. Figure 2.b computes the number of stalls in
selected blocks according to the compiler. Indeed for each
instruction, the compiler provides the cycle when it is is-
sued. Comparing this value to the issue number gives the
result. Each line of the table blocks has a column corre-
sponding to the id of the including function, the same hier-
archy applies for instructions and blocks.

Scripting new analysis involves the use of the database
associated to the code. We provide some details concern-
ing this database infrastructure: the instructions, bundles,
blocks, directives, loops, functions and graphs are stored in
13 tables. The size of the database seems to depend linearly

select ’No of setf :’||count(*)
from blocks,instructions
where blocks.function=FUNCTION
and instructions.block=blocks.id
and instructions.name=’setf’;

a. Number of setf

select max(cycle)-min(cycle)-count(id)
from instructions
where bstop=1
and instructions.block in (SELECTED_BLOCS)
group by block;

b. Counting stalls in selected blocs

Figure 2. Two examples of SQL requests (FUNCTION is a macro substituted by the id of the current function).

on the size of the assembly code: for codes ranging from a
few KB to 6 MB, the expansion factor remains between 4
and 5. The size of the database, especially the size of the
instruction table, impacts the way queries must be written
in order to be efficient.

To sum-up this section, MAQAO computes the structure
of the assembly code and enables application specific anal-
yses and expert knowledge to be integrated inside the tool,
via new scripts. Code pattern detection can be combined
with hotspot detection or other dynamic analyses. As a re-
sult, it has a great potential in revealing the possible flaws
of the code generation.

5 Static Evaluation
In this section, a simple static performance model is pre-

sented. The goal of this model is to assess for simple vector
loops (iterations being independent) the quality of the in-
struction schedule produced by the compiler. This model
will be critical to quickly identify loops where potentially
the compiler has poorly performed.

5.1 Static Performance model

In this section, we assume that loops are simple vec-
tor loops without dependencies between iterations. For
each loop, MAQAO analyzes the assembly code gener-
ated and automatically sorts assembly instructions (except
the nops) into various classes: Floating Point Add, Float-
ing Point Multiply, Load Floating Point Instructions, Load
Floating Pair Instructions, Integer Instructions, etc ... Each
instruction class is then counted and assembled into in-
struction groups to compute simple issue bounds according
to Itanium 2 specifications. The major instruction groups
are: Floating Point Arithmetic Group (constituted of all
of the Floating Point Arithmetic including Floating Point
moves), Floating Point Memory Group (constituted of all
of the Floating Point Load and Store Instructions includ-
ing Prefetch Instructions), Integer Arithmetic Group (con-
stituted of all of the integer arithmetic instructions), Integer
Memory Group (constituted of all of the integer load and
store instructions).

For each group, a simple bound based on issue limita-
tions can be computed: for example if the Floating Point
Arithmetic Group contains � instructions, since Itanium 2
can issue up to 2 Floating Point Arithmetic Instructions per

Loop FFTW2 FFTW4 FFFTW8
FP Fma 8 28 84
FP AB 4 14 42

FP Load 6 14 30
FP Store 4 8 16
FP MB 3 6 11
GLB 4 14 42
Issues 9 23 56

Table 4. Bounds for FFTW2 and FFTW4 codelets.

cycle, then ����� cycles are needed to issue these � in-
structions. This number is then called Floating Point Arith-
metic Bound (FPAB). The Floating Point Memory Bound
(FPMB) is more complex to evaluate because several rules
have to be taken into account. Memory accesses are done
through 4 memory ports (M0, M1, M2, M3) which can each
service one request per cycle (resulting in a peak rate of
memory accesses per cycle). While Floating Point Loads
can be serviced by any of the 4 ports, stores can only be
serviced by ports M2 and M3, prefetch by ports M0 and
M1 etc ... Then all of these bounds are combined together
to compute the Global Loop Bound (GLB) taking into ac-
count all of the limitations imposed by Itanium 2 archi-
tecture. GLB is fairly complex to compute, it amounts to
solve a small Integer Linear Programming Problem. The
Global Loop Bound corresponds to an ideal case assuming
that there are no dependencies between instructions and that
all of the operands are in L2. This bound is interesting to be
compared with the number of issue cycles of the loop body
(corresponding to the instruction schedule produced by the
compiler).

5.2 Example on FFTW

Table 4 gives the output produced by MAQAO on the
FFTW2 and FFTW4 codelets. A simple look at the last
two lines indicates an important mismatch between GLB
and issue cycles. This indicates that the compiler has been
constrained by dependencies between instructions. A look
at the source code reveals array accesses (reads and writes)
of the form ��� ��� , �	� �����
� . . . Since the compiler does not
know the �	��� value, it performs a very conservative schedule
resulting in poor performance. In fact the compiler is right

to be conservative because if ������� � , array access order
has to be preserved. Unfortunately, for all practical cases,
����� value is never equal to � . MAQAO there was helpful to
point at the instruction schedule problem. When refining the
analysis, MAQAO indicated us that the load and store order
was preserved while it was unnecessary due to the fact that
����� value was never equal to � .

MAQAO provides also additional information on loops
such as the estimated total execution time in function and�

the loop iteration count. For software pipelined loops,
this information is extremely useful because combined with
value profiling on loop trip counts, it allows to detect perfor-
mance problems due time wasted in pipeline draining (see
Section 8.1.2).

6 Dynamic Analysis

From a dynamic analysis side, MAQAO goes beyond
mimicking other profiling tools: in addition to support hard-
ware counters, and tracking where CPU cycles are spent, it
performs value profiling. Value profiling is often the miss-
ing link between the observed behavior on the hardware and
the nature of the application. This feature yields to numer-
ous optimization opportunities. Usually instrumentation for
value profiling is done within the source code, but MAQAO
does this at the assembly level. The goal is to prevent the
compiler from changing code generation due to the pres-
ence of profiling probes (as a nice side effect this method in-
duces very low run-time overhead). Therefore, doing the in-
strumentation after the compilation stage allows to observe
the real application behavior with minimal disturbance.

Instrumentation Framework: instrumentation is done
by injecting a limited number of extra-bundles, named as-
sembly probes, around the targeted code fragments to mon-
itor. These bundles are in charge of storing in a dedicated
memory zone some specific registers. MAQAO ensures
that, by analyzing allocated registers or by adding spill/fill
instructions, the register stack remained unchanged by the
instrumentation.

Execution time profiling: from the GUI, probes can be
automatically inserted around a selected code fragment.
Code fragment size can vary from a function down to a
basic block. An important aspect of this assembly probe
mechanism is its ability to draw an accurate picture of the
execution time: additionally to the total number of cycles
spent in the function we get individual time for each func-
tion execution1.

1Individual times are also used to detect if the ITC register was ac-
cessed in a burst mode (several times within 40 cycles) which degrades its
accuracy from 6 to 40 cycles.

Value profiling: any register of high interest can be sin-
gled out for monitoring:

� Function parameters: distribution of parameter values
for any given function is a clear indicator that code ver-
sioning is an optimization to consider;

� Addresses used in load/store/prefetch instructions: this
allows to build the address stream of the first loop iter-
ations. Then comparing the address patterns with sim-
ilar address patterns tested via micro-benchmarking,
alignment problems like bank conflicts or more subtle
load store queue conflicts [1] can be detected.

� Prefetch Analysis: by tracking the target address of
the prefetch instruction and comparing with the mem-
ory address used in load/store instructions (cf item
above), prefetch distance can be computed and the ar-
rays which are indeed prefetched can be determined.

� ITC register: direct access to this clock register allows
a fine grain execution time profiling.

� LC register: used to store the number of iterations for
every counted loops. This is a powerful parameter to
evaluate relevance of software pipeline.

For hardware counters the implementation relies on stan-
dard tools for standard operations, which is similar to the
scheme followed by HPCview [8]. Hence all the hard-
ware counter management is basically done by interfacing
perfmon [12]. Incorporating the analysis tree described by
Levinthal [13] to help end-user to navigate among counter
terminology would be a nice add-on.

7 Methodology for Guided Optimization

As presented in the previous sections, MAQAO provides
a set of static and dynamic analyses of the compiled code.
We propose thereafter a methodology, helping the expert
user to locate performance bottlenecks and giving hints on
how to remove these bottlenecks and optimize the code. We
assume expert users are willing to either modify the source
code, change compiler options (possibly resorting to black
belt options), modify the assembly code or give hints to an
optimizing scheduler such as XLG [22].

The step by step methodology is the following:

1. Determine most important functions and code sections
by using a standard profiling tool.

2. Detect assembly code patterns of known poor perfor-
mance. For each pattern detected, we associate some
hints concerning possible optimizations, depending on
the compiler used. For instance, setf/getf high la-
tency patterns often results from poor performance ad-
dress computation in Fortran codes. Porting the code
from Fortran to C solves this issue because the address
computation is better handled by the Intel C compiler.

Note that the database of detected patterns is evolv-
ing and can be enlarged through expertise or micro-
benchmarking.

3. Once no inefficient assembly code patterns remains,
we make an assessment on how far the code is from
the optimal and what is the next bottleneck. For this,
we evaluate three performance values:

a. The static performance bounds presented in Sec-
tion 5. They evaluate the density of computation
and memory instructions in the code, and answer
to the question ’how far is the code from optimal
usage of functional units ?’. They are optimistic
bounds: once reached, the code cannot be opti-
mized further, as far as functional units are con-
cerned.

b. The number of instruction issues, according to
the compiler model. This information is given
through annotation in the assembly code.

c. The results of cycle profiling.

When the three bounds match (or are in a 10% inter-
val), there is no need to optimize further. The other
cases are handled by the next steps.

4. If there are any difference between bounds 3.b and 3.c,
this comes from memory latencies. Comparing the re-
sults of an address value profiling (prefetches, loads
and stores alike) with the memory access templates
obtained from micro-benchmarkingwill determine the
kind of bottleneck. Such a bottleneck can be a mem-
ory bank conflict, a wrong load/store queue aliases or
missing or poorly parameterized prefetches. Version-
ing on the addresses solves the issue due to memory
bank conflicts. Additionally black belt pragmas can be
used to schedule differently load and stores so as to
avoid aliases and they can be used to change prefetch
distances. If any difference remains between bounds
3.b and 3.a, resort to classical performance counter
methodology to identify the issue.

5. If the bounds 3.b and 3.a correspond, the compiler has
an accurate performance model of the code. Detect-
ing bubbles in the compiler static schedule hints for
a higher factor of unroll. Indeed this enables better
scheduling opportunities (with a jam for instance) and
may remove the bubbles.
Besides, on innermost loops, MAQAO can extrapolate
in terms of cycle/iteration, the complexity of the loop.
This evaluation is based on the issue count and the
pipeline parameters (if the loop is pipelined) Making
a value profiling of the loop trip counts and building a
histogram of values can determine whether (or when)

other versions of the code are more appropriate. As a
matter of fact a deep pipelined loop is not appropriate
for small loop trip count. Versioning the code at the
source level, or preventing the compiler from software
pipelining, solves this issue. On the reverse, it may
be beneficial to pipeline a partially unrolled loop, pro-
vided the number of iterations is high enough. Compil-
ing with ’-O3’ triggers software pipeline optimization,
and removing false dependences (using restrict
or no-alias compiler flags) may help the compiler.
Other internal limits such as basic block size can pre-
vent the compiler from performing this optimization.
In this case, resorting to an optimizing scheduler like
XLG [22] is necessary.

6. Value-profile the parameters of the hot functions
(building histograms). If the same values often appear,
it can be worth performing some function specializa-
tion. Recompile the versioned function and evaluate
its performance with MAQAO.

After each code modification, the user can iterate the op-
timizing process. Up to now, these steps are not automati-
cally processed, however most of the analysis/performance
evaluations could be performed by MAQAO. This is still
on-going work.

If there are remaining performance bottlenecks, then the
expert has to resort to an optimization guided by perfor-
mance counter analysis.

8 Case Studies

In this section we report results obtained using MAQAO
to analyze and drive optimizations on two different appli-
cations. One being a traditional scientific code focused on
floating point performance and stressing the memory band-
width, while the second code is integer intensive with lim-
ited memory requirements.

Both codes were run on the same hardware platform:
a BULL Novascale system populated with 256 Itanium 2.
Each processor is running at 1300 MHz with 3MB of L3
cache. On the software side we use Intel C/Fortran com-
piler 8.1 2.

8.1 TERA Benchmark

The first case study concerns the optimization of the
TERA [14] reference benchmark. This benchmark, de-
signed and used by the CEA-DAM (French atomic agency)
in Fortran, consists in the resolution of fluid dynamic equa-
tions with precise methods. With a profiling phase, it ap-
peared that two code sections deserve to be well optimized
since they are the most time consuming sections of the
whole benchmark. First, Eis Loop is a simple vector loop

2Intel Compiler C/Fortran v8.1.022, built on September 22nd, 2004

performing floating point intensive operations on several ar-
rays whereas Totalisation involves a while structure with
complex control flow driven by array values.

8.1.1 Eis Loop

The loop is defined as :

do i = first_cell, last_cell
Eis(i) = T(i) - 0.5*(U(i)**2 + V(i)**2 + W(i)**2)

end do

We found that the best compiling options for this code
are -03, -fno-alias.

Address Computations: Relying on simple pattern
recognition (see Section 4.3), MAQAO finds that the com-
piler generated low performance code to compute ad-
dresses. Indeed on Itanium 2 architecture, Intel Fortran
back-end uses high latency floating point instructions (such
as getf, setf, xma) to compute integer addresses.
By experience, we know that this is a flaw of the Fortran
compiler. Indeed by porting the code from Fortran to C,
all array addresses computations are switched from floating
point to arithmetic integer units.

Loop Fission: By inspecting the control flow graph and
gathering line statistics from assembly code, MAQAO finds
that from a single loop at the source level the compiler has
generated two consecutive loops. The first of these loops is
unrolled by a factor of 2 and software pipelined. The second
loop is only software pipelined and served as epilogue code
for the preceding unrolled loop. Due to the unrolling factor
of 2, this means that the epilogue loop is at most executed
once i.e. when trip count of the original loop is odd.

Therefore two sources of performance loss are isolated:

1. slow code generated for address computations,

2. cost of the pipeline prologue/epilogue.

As discussed earlier, the address computation problem is
solved by porting the code into C.

The pipeline problem is handled by splitting the loop at
the C level. Since the compiler performs unappropriated
unrolling and epilogue generation, we hand-unroll 8 times
the loop body and write a loop tail code for (at most) 7 ad-
ditional iterations.

For the 8-unrolled version, the compiler generates a
dense SWP loop (only 6% of nop operations) and makes an
efficient usage of the large register file. Additionally, thanks
to unrolling, a large number of loads are available allowing
a schedule which prevents most of the load/store queue and
bank conflicts. The loop tail code, displayed in Figure 3,
is implemented in C as a switch section in which each

switch (remaining_iterations) {
case 7:
Eis[n+6]=T[n+6]-0.5*(U[n+6]*U[n+6]+V[n+6]*V[n+6]+

W[n+6]*W[n+6]);
case 6:
Eis[n+5]=T[n+5]-0.5*(U[n+5]*U[n+5]+V[n+5]*V[n+5]+

W[n+5]*W[n+5]);
// ... and so on for case 5 to 2
case 1:
Eis[n]=T[n]-0.5*(U[n]*U[n]+V[n]*V[n]+

W[n]*W[n]);
}

Figure 3. Loop tail code for the improved version
of Eis Loop.

case is not followed by a break. This allows a late entry
into the switch-case structure.

For this structure, the compiler generates a fully predi-
cated code (7 iterations). In this particular case this is far
more efficient than the SWP version. Overall these two
code transformations improve the performance of this loop
by 22 %.

8.1.2 Totalisation Function

The other critical function of the benchmark is composed of
nested loops with a complex control flow: a while struc-
ture with early exits and three vector loops.

Value Profiling: The code generated by the compiler is
rather complex due to the highly conditional branching
structure of this code section: the while loop containing
early exits. MAQAO detects the use of software pipeline
with unappropriated parameters for small vectors. Further-
more, this loop is preceded by a costly block of array ad-
dress computations which in terms of execution time cor-
responds to 10 iterations of the main loop body. This is
extremely high since MAQAO’s value profiling analysis
shows the loop trip count is constant and equal to 5.
The appropriate solution is to specialize this loop for 5 it-
erations. After converting the code from Fortran to C (to
avoid address computation, see section 8.1.1), versioning is
applied. The peeled case (5 iterations) is fully unrolled in
C. For this code the compiler generates a predicated code,
giving better performance than the software pipelined ver-
sion. Of course, for other trip count values, original loop is
kept back and a software pipelined loop is generated. The
versioning technique adds several arcs in the control flow
graph to select at runtime which is the correct version to ex-
ecute but overall this new function outperforms the original
one by 20 %.

8.2 SHA-0 Attack

The second case study concerns the optimization of a
cryptanalysis application: the SHA-0 attack. This algorithm

was developed by Chabaud and Joux [15] and this imple-
mentation was the first to find a full collision on SHA-0 in
August 2004 [16]. We used the best found compiling op-
tions: -O2 -fno_alias.

Program Overview : Written in C, the attack code re-
quires high performance integer computation. Indeed the
algorithm manipulates integer values on 32 bits (because
SHA-0 was designed for 32 bits architectures). The sec-
ond characteristic of this code is complex control flow. For
each pair of messages, the algorithm applies SHA-0 encryp-
tion turn after turn (out of 80 turns) in parallel. But during
these encryptions, the program contains early exits to stop
the computation on these 2 messages when it is sure that
they will not collide at the end of the 80 turns. Because
of these early exits, the control flow is very complex and
unpredictable.

We investigate the most time consuming function, called
do_neutral, that takes about 70 % of the whole CPU
time. do_neutral compares messages belonging to the
same set called neutral set (i.e. having in common several
properties on their bits). Iterating on this set allows to reuse
some computations made for previous messages.

Register file pressure: MAQAO static analysis high-
lights a potential bottleneck due to the high pressure on
integer registers. The compiler generates many implicit
spill/fill instructions (found by pattern recognition) pointing
out that, at some points, more than 128 registers are
alive. But analyzing the assembly code, some of these
instructions are superfluous. Indeed, in the code displayed

{.mii
st8 [r31]=r67
add r31=176,sp //r31 is now set to address sp+176
nop.i 0 ;;

}
{.mii
ld8 r8=[r31] //load value at sp+176 in r8
add r31=176,sp //r31 is re-set to the same value sp+176
nop.i 0 ;;

}
{.mii
st8 [r31]=r8 //r8 is stored at the same address (sp+176)
add r31=184,sp
nop.i 0 ;;

}

Figure 4. Simple example of implicit spill/fill

in Figure 4, it is obvious that the last store saves an
unmodified value (r8) loaded a few instructions before. So
the two additions, the load and the store associated to r8,
can be safely removed.
The same pattern appears across basic blocks suggesting
potential problem in data flow estimation by the compiler.

Counter Value
Cycles CPU 24 309 980
Stalls Cycles 3 266 458

Stalls Cycles due to L1D 1 173 888
L1D Misses 76 099

Table 5. Hardware counters ondo_neutral func-
tion. Notice that a large amount of stall cycles is
due to L1 Data cache misses.

Replacing theses instructions with nops or deleting
them (with rescheduling) shows that they are useless. Even
if their removal does not bring a significant speedup, it is
more than plain dead code elimination since these instruc-
tions were executed and memory requests were issued. A
more ambitious scheme would use these freed slots as hoist-
ing opportunities. Another scheme under investigation is to
use memory fences to split do_neutral in smaller sub-
functions to facilitate register allocation for the compiler.

Memory/Cache Interference: Because SHA-0 algo-
rithm uses exclusively 32 bits integers, the SHA-0 attack
intensely uses 32 bits integers too. On the generated code
this is showed by many memory interactions on 32 bits. By
micro-benchmarking training (see Section 4.3), MAQAO
knows that 4B interactions lead to performance loss on Ita-
nium 2 architecture. This is mainly due to the potential 8B
unalignement. Some banking structure of 8-Byte width ap-
pears on the data path for store to the L1D cache (see [19]
page 60). Indeed in a 32 bits arrays, one cell out of two is
not aligned on a 64 bits boundary. Furthermore, on dynamic
side, table 5 displays the list of hardware counters related
to cache/memory for one call of do_neutral. Hardware
counters confirm the high number of memory interactions.
It seems that stalls occur due to the excessive pressure on
L1D 3. This is surprising, since the overall memory foot-
print is around 5 KB, fitting perfectly in L1D.

Taking into account these two information, we use
padding to align load/store on 64 bits boundary. Even if
padding is a well known optimization to reduce cache con-
flicts, in our case, we used it to align each array cell. As
a side effect, memory footprint doubles (because each cell
size grows from 4B to 8B) but, applying this optimization
on a part of do_neutral function we obtain a speed-up
of 2 (execution time is halved !) with the same compil-
ing options (see Table 6). As an unexpected conclusion,
increasing the memory footprint to align data on 64 bits
boundary increases the performance by a factor 2 avoid-
ing almost all bubbles due to L1D access. Notice that the

3Measurement is based on BE_L1D_FPU_BUBBLE_L1D perfmon
counter.

Counter Original Optimized
(padding)

Cycles CPU 763.1 368.8
Numbers of instructions 1245 1326

Stalls Cycles 498.6 63.3
Stalls Cycles due to L1D 118.4 3.0

L1D Misses 57.2 1.0
Number of loads 278 270
Number of stores 159 154

Table 6. Hardware counters on part of
do_neutral function: original version and
optimized with padding.

number of instructions retired increases with padding opti-
mization because, instead of accessing directly the arrays,
we need to multiply indices by 2.

9 Conclusion

As shown in the case studies MAQAO already fulfills
needs as a convenient and powerful analysis platform. It al-
lows to quickly detect problems in the assembly code gen-
erated and it gives useful hints on fixes.

Addressing the performance problem at the assembly
level seems relevant, especially on Itanium 2 due to the
EPIC instruction set and the importance of compiled code
quality. The ability to navigate and present the restructured
code in its hierarchy allows end-user to build up incremen-
tally his knowledge base. SQL offers a flexible interface to
dive into the code structure tracking potential performance
problems in particular known poor performance code pat-
terns. The combined use of a static model and value profil-
ing capabilities allows to refine quickly code performance
analysis and offers capabilities complementary to the stan-
dard hardware performance counter based tools.

Finally, based on MAQAO, the performance analysis
methodology proposed allows to perform efficient code op-
timization.

Future work include automating the process of perfor-
mance detection and optimization lending towards an as-
sembly to assembly code optimizer. This would include
for example deletion of useless spill/fill instructions, and
load/store instructions rescheduling.

References

[1] Christophe Lemuet, William Jalby and
Sid Ahmed Ali Touati. Improving Load/Store
Queues Usage in Scientific Computing. ICPP 2004:
38-45

[2] Christophe Alias and Denis Barthou. On the Recog-
nition of Algorithm Templates. Electr. Notes Theor.
Comput. Sci. 82(2): 2003

[3] W. Jalby and C. Lemuet. Exploring and optimizing Ita-
nium2 cache(s) performance for scientific computing,
2nd Workshop on EPIC Compilers and Architectures,
held in conjunction with MICRO35, November 2002.
Istanbul, Turkey

[4] Amitabh Srivastava and Alan Eustace. ATOM - A Sys-
tem for Building Customized Program Analysis Tools.
PLDI 1994: 196-205

[5] Intel Corporation. VTune Performance Analyzer
http://www.intel.com/software/products/vtune

[6] John Ellson, Emden R. Gansner, Eleftherios Kout-
sofios, Stephen C. North and Gordon Woodhull.
Graphviz - Open Source Graph Drawing Tools. Graph
Drawing 2001: 483-484

[7] Erven Rohou, François Bodin, Andre Seznec, Gwen-
dal Le Fol, Francois Charot and Frederic Raimbault.
SALTO : System for Assembly-Language Transfor-
mation and Optimization. RR-2980, 27 p., cite-
seer.ist.psu.edu/rohou96salto.html

[8] J. Mellor-Crummey, R. Fowler and G. Marin.
HPCView: A tool for top-down analysis of node per-
formance. Computer Science Institute Second Annual
Symposium, Santa Fe, NM, October 2001. 2001,
citeseer.ist.psu.edu/mellor-crummey01hpcview.html
http://hipersoft.cs.rice.edu/hpctoolkit/papers.html

[9] N. Mukherjee, G.D. Riley and J.R. Gurd. FINESSE: A
Prototype Feedback-guided Performance Enhancement
System. Parallel and Distributed Processing (PDP)
2000, Rhodes, Greece, January 2000

[10] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing Representative Portions of
Large Intelő Itaniumő Programs with Dynamic Instru-
mentation Micro 37, Portland, OR., 2004

[11] Jack Dongarra, Kevin S. London, Shirley Moore,
Philip Mucci, Daniel Terpstra, HaihangYou, Min Zhou.
Experiences and Lessons Learned with a Portable Inter-
face to Hardware Performance Counters. IPDPS 2003:
289

[12] Stéphane Eranian, Perfmon project home page:
www.hpl.hp.com/research/linux/perfmon HP Labs

[13] David Levinthal. Building and Optimizing Appli-
cations for the Intel(R) Itanium(R) Processor, Clus-
terWorld Conference, San Jose, CA, May 2004.
http://www.clusterworld.com/CWCE2004

[14] CEA DAM, French Atomic Commission. TERA
project review (in french), CHOCS : revue scientifique
et technique de la Direction des ApplicationsMilitaires,
Num. 28, October 2003

[15] Florent Chabaud and Antoine Joux. Differential Colli-
sions in SHA-0, CRYPTO ’98: Proceedings of the 18th
Annual International Cryptology Conference on Ad-
vances in Cryptology, 1998, pages = 56–71, Springer-
Verlag,

[16] E. Biham and R. Chen and A. Joux and P. Carribault
and W. Jalby and C. Lemuet. Collisions of SHA-0 and
Reduced SHA-1, EUROCRYPT’05 2005

[17] http://sourceforge.net/projects/cprof

[18] Robert Hundt, HP Caliper: An Architecture for
Performance Analysis Tools, Proceedings of the
First Workshop on Industrial Experiences with Systems
Software, WIESS 2000, October, 2000, San Diego, CA,
USA. USENIX 2000 http://www.hp.com/go/caliper

[19] Intel Corporation, Intel Itanium 2 Processor Reference
Manual For Software Development and Optimization,
251110-002, April 2003

[20] Intel Corporation, Introduction to Microarchitectural
Optimization for Itanium 2 Processors, 251464-001,
2002

[21] Intel Corporation, Intel ItaniumArchitecture Software
Developer’s Manual, Volume 3: Instruction Set Refer-
ence rev. 2.1, October 2002

[22] Caps Entreprise, www.caps-entreprise.com

[23] Matteo Frigo and Steven G. Johnson, The Design
and Implementation of FFTW3, Proceedings of the
IEEE 93 (2), 216-231 (2005), Special Issue on Pro-
gram Generation, Optimization, and Platform Adapta-
tion, www.fftw.org

[24] Luiz De Rose, Ted Hoover Jr. and Jeffrey K.
Hollingsworth, The Dynamic Probe Class Library: An
Infrastructure for Developing Instrumentation for Per-
formance Tools, www.ptools.org/projects/dpcl IPDPS
2001: 66

[25] B. R. Buck and J. K. Hollingsworth, An API for run-
time code patching Journal of High Performance Com-
puting Application, 14(4):317-329, 1994.

View publication statsView publication stats

