
A Balanced Approach to Application

Performance Tuning

Souad Koliai1, Stéphane Zuckerman1, Emmanuel Oseret1, Mickaël Ivascot1,
Tipp Moseley1, Dinh Quang2, and William Jalby1

1 University of Versailles Saint-Quentin-en-Yvelines, France
2 Dassault-Aviation, France

{firstname.lastname}@prism.uvsq.fr,tipp.moseley@colorado.edu,Quang.Dinh@
dassault-aviation.com

Abstract. Current hardware trends place increasing pressure on pro-
grammers and tools to optimize scientific code. Numerous tools and tech-
niques exist, but no single tool is a panacea; instead, different tools have
different strengths. Therefore, an assortment of performance tuning util-
ities and strategies are necessary to best utilize scarce resources (e.g.,
bandwidth, functional units, cache).
This paper describes a combined methodology for the optimization pro-
cess. The strategy combines static assembly analysis using MAQAO with
dynamic information from hardware performance monitoring (HPM) and
memory traces. We introduce a new technique, decremental analysis
(DECAN), to iteratively identify the individual instructions responsi-
ble for performance bottlenecks. We present case studies on applications
from several independent software vendors (ISVs) on a SMP Xeon Core 2
platform. These strategies help discover problems related to memory ac-
cess locality and loop unrolling that lead to a sequential performance
improvement of a factor of 2.

1 Introduction

In high performance computing, there is a constant hunger for more resources
(e.g., CPU, RAM, I/O). With finite limits on these resources, it is the respon-
sibility of the programmer, interacting with the compiler, to optimize an ap-
plication for peak performance. Optimization consists of gathering data about
a program’s behavior, diagnosing the problem by identifying resources that are
saturated and the instructions at fault, and prescribing a solution which entails
applying a change to the code’s algorithm, structure, or data layout.

The first step, data collection, involves an array of different analysis tech-
niques to examine different aspects of application performance. Typically, a code
is deemed optimal if it approaches the peak numerical throughput of the proces-
sor; this implies that only an algorithmic change could further improve perfor-
mance. Most often, memory system effects like working set, stride, bandwidth,
and alignment are the key factors. Once those are solved, it is important to iden-
tify the best instruction scheduling and unrolling factors to keep the pipeline full
and balanced. After a particular resource has been identified as a bottleneck, it

2

is necessary to characterize the specific cause of the problem by pinpointing the
specific instructions involved and how they are suboptimal. Using this informa-
tion, it is finally the responsibility of the programmer to enact a solution.

In practice, this process is extremely tedious because of the difficulty to
understand a program’s behavior and the complexity of modern processors. As
a result, many tools and methodologies exist to analyze a code and guide the
optimization. However, the provided results are essentially raw data, requiring an
experienced programmer to perform analysis and synthesis of the information.
Furthermore, many existing methodologies do not cover the entire process of
analysis and perform a subset of the whole analysis (for example, only static
analysis).

Hardware performance monitoring (HPM) can provide great insight into
a program’s performance bottlenecks. However, there are hundreds of perfor-
mance counters, but only two at a time can be counted on a Core 2. Arcane
event descriptions make most performance counters useful only for true micro-
architecture experts. Given these problems, we have invested significant time into
identifying which performance counters are 1) understandable and 2) correlate
well with performance. Using HPM data, we can identify potential bottlenecks
and move toward pinpointing a region of code that has potential for optimiza-
tion.

In this paper, we address optimization of HPC code, specifically CPU- and
memory-bound applications. We describe a semi-automated methodology to an-
alyze performance and guide the optimization process. Both static analysis (with
MAQAO and visual inspection) and dynamic analysis (of memory access pat-
terns) of the code are performed. Information from these analyses guides us to
the regions of code furthest from peak performance. Using this information, we
introduce a new approach to identify the specific set of instructions that are
responsible for increased computation latency: decremental analysis (DECAN).
DECAN involves systematically changing instructions’ behavior in a particular
region to identify the runtime contribution of each instruction or set of instruc-
tions. Since it uses different and complementary types of analyses (static, dy-
namic and decremental), our semi-automated methodology is called “balanced”.

This methodology has been applied on two industrial HPC codes: RBgauss
from RECOM Services and ITRSOL from Dassault-Aviation. Our modifications
to the latter code achieved an improvement in sequential and parallel perfor-
mance by a factor of 2.

Section 2 presents the tools and techniques in our analysis approach. Section 3
deals with two case studies of HPC codes on which the methodology was applied
with significant performance improvement. Section 4 discusses other approaches
to performance tuning. Finally, Section 5 concludes.

2 Toward a Better Evaluation Process

The following performance analysis techniques are intended to identify the root
cause of a performance bottleneck. It is assumed that the targets of optimiza-

A Balanced Approach to Application Performance Tuning 3

Fig. 1. Methodology diagram.

tion are significant contributors to program execution time as reported by tools
gprof [9] or Intel PTU [1].

This section provides a high-level description of each step of the methodology.
Figure 1 shows a diagram of the flow through the process.

2.1 Static Analysis with MAQAO

Maqao [6] is a static analysis tool which aims at analyzing assembly code
produced by the compiler, extracting key characteristics from it and detecting
potential inefficiencies. Maqao was originally developed for the Intel Itanium
architecture, and we have extended it to support x86 programs using an Intel
Core 2 model as well. Figure 2 shows the graphical interface for browsing com-
piled programs. It can provide the user with many metrics derived from the
assembly code analysis:

1. Vectorization Report Analysis: this report, shown in Figure 3(b) pro-
vides individual measures on aligned vector instruction usage (load, store,
add, multiply). For example a vector ratio of 1 on the multiply operations
means that all of the multiply operations have been vectorized by the com-
piler. This ratio is computed taking into account only floating point oper-
ations and full length vector operations on aligned data. Some compilers
report having vectorized loops but without telling how far they go, while
others are just silent as to which optimizing transformations are done. For
example, ICC reports it has “vectorized” loops involving double precision

4

Fig. 2. The Maqao interface.

values when it generates SSE scalar (64 bits) instructions whereas it should
indicate when it generates SSE packed (128 bits) instructions. These met-
rics are essential to evaluate the quality of the vectorizing capabilities of the
compiler and therefore try to palliate some of its deficiencies by inserting
appropriate pragmas or directives.

2. Execution Port Usage: for each of the independent execution ports, Maqao

computes an estimate of the number of cycles spent for one iteration of the
loop. Figure 3(a) shows the report presented by Maqao . Since all ports
can operate in parallel, this metric is essential to measure the amount of
parallelism exploitable between the key functional units: add, multiply, load
and store units. This provides a first estimate of a best performance case (as-
suming all operands are in L1) and also of the potential imbalance between
the port usage. For example, this enables quick detection of whether a code
is memory bound and to get a first quantitative estimate of how much it is
memory bound.

3. Performance Estimation in L1: taking into account all of the limitations
of the pipeline front end (decoder and permanent register file access limita-
tions, special microcoded instructions) and the pipeline back end, Maqao

provides an estimate of the amount of cycles necessary to execute one loop it-
eration assuming all operands are in L1. As previously mentioned, this bound
is most useful as an optimal lower bound representing peak execution.

4. Performance Estimations in L2/RAM: Maqao computes an estimate
for the execution time of a loop iteration, assuming all operands are in L2 or
RAM and are accessed with stride 1. This estimation relies on memory ac-
cess patterns detected at the assembly level and micro benchmarking results
on the same memory patterns. The L2 estimate constitutes a reasonable

A Balanced Approach to Application Performance Tuning 5

(a) MAQAO statistics (b) MAQAO reports

Fig. 3. Maqao interface details.

performance objective while the RAM estimate is a stride 1 worst case. The
drawback of both of these estimates is twofold: they ignore the stride prob-
lem (which in RAM will be essential), and they do not take into account the
mixture of hits and misses which is typical of real applications. The hit/miss
problem can be better analyzed by using decremental performance analy-
sis (Section 2.3) which helps identify the delinquent loads/stores which are
accessing the memory.

5. Performance Projections for Full Vectorization: In cases where the
code is partially or not vectorized, Maqao computes performance estima-
tions assuming a full vectorization. This is performed by replacing the scalar
operations by their vector counterparts and updating the timing estimate
due to the use of these instructions. This is particularly useful to guide the
optimization process and to avoid useless efforts: for example, indirect ac-
cess to arrays cannot be vectorized due to the lack of vector scatter/gather
instructions in the current SSE instruction sets for the x86 ISA. However,
in most loops, these indirect access are followed by floating point operations
(adds or multiplies) which could be vectorized. The Maqao performance
projection gives a quick estimate of whether trying to vectorize these opera-
tions will pay off. The performance projection can also be extremely helpful
when combined with the decremental performance analysis. If the latter has
determined that all of the load/store operations are accessing operands di-

6

rectly from memory, there is no point in trying to vectorize memory accesses
because they are roughly equivalent in vector or scalar mode.

6. Loop Attribute Profiling: Maqao supports loop attribute profiling which
provides important metrics such as the number of iteration of the loop body
and the number of instructions per iteration. This concept will be further
developed in Section 2.2.

Source Analysis The correlation made by Maqao between assembly and
source files allows to pinpoint automatically the corresponding source code. For
example, if Maqao notifies some memory accesses (loads) in the execution ports
report, the correlation with the source code permits to detect that there are addi-
tional loads due to indirect accesses. The source analysis helps to understand the
way memory is accessed (directly or indirectly). This stage must be performed
manually.

2.2 Dynamic Analysis: Hardware Counters and Memory Traces

Hardware Counters Tools such as Intel’s PTU[1], PerfMon[8], PAPI[14], and
others make gathering HPM information relatively easy. However, even though
hundreds of events can be monitored through hardware counters, most of the
counters give information that is either too arcane or too esoteric to be useful.
Moreover, only a few events can be monitored at once on most processors. For
example, on the Intel Core 2 processors, only 2 different configurable events can
be monitored at once in most cases (up to 4 events in very particular cases, such
as the monitoring of different variations of a same events). Hence, the first issue
to be solved is to identify a limited set of performance counters which should
have the following characteristics:

– A small number to avoid numerous reruns which are costly in time.
– Easy to understand and to correlate with performance. On top of the doc-

umentation problem, performance counters often refer to low level details
of the architecture which are hard to interpret correctly. Understanding the
true meaning of many performance counters involves an intimate knowledge
of the microarchitecture. Through a painstaking exploration process, we have
identified a set of counters that we find to be understandable and correlate
well with performance of our target applications. Not surprisingly, the best
indicators relate to the memory system. The following hardware counters
have been identified to be key indicators of performance for our applications
and are understandable.

The INTEL documentation gives the following definitions for the previous
counters:

– L1D REPL: Counts the number of lines brought into the L1 data cache.
– L2 LINES IN.SELF.ANY/DEMAND/PREFETCH: Counts the num-

ber of cache lines allocated in the L2 cache. Cache lines are allocated in the

A Balanced Approach to Application Performance Tuning 7

L2 cache as a result of requests from the L1 data and instruction caches
and the L2 hardware prefetchers to cache lines that are missing in the L2
cache. This event can also count demand requests and L2 hardware prefetch
requests together (ANY) or separately (DEMAND/PREFETCH).

– CPU CLK UNHALTED.TOTAL CYCLES: Counts the total number
of core cycles, while it is running code and while it is halted, as long as it
not in a sleep state.

Memory Traces Assembly-level instrumentation is used to collect memory
traces to analyze memory access patterns. The memory traces provide a stride
report for targeted instructions. Using this stride report, for example, instruc-
tions with a longer stride than operand size can be identified as potential per-
formance bottlenecks. An example using this type of information is given in
Section 3.2.

2.3 Decremental Analysis

When memory behavior is identified as a problem with a loop, given the impre-
cise nature of performance counters, it is often still difficult to know the specific
delinquent instructions. To quickly identify such instructions, we introduce a
technique called decremental analysis (DECAN).

The concept is a simple one: first measure the original version of the code, and
then measure a version of code modified by removing one or more expressions
or instructions such as memory access instructions. This will of course result in
incorrect output of the program, and instructions that will result in a crash or
alternate control flow are not removed. For instance, a written variable has to be
used after it has been written otherwise the compiler will reduce the code because
it will consider the variable useless. Once an instruction is removed, the program
is again profiled to account for the contribution of the removed instruction.
Timing differences and deltas in L1 and L2 miss rates indicate an individual
instruction’s effect on a loop’s overall performance. DECAN is performed on 2
levels:

1. Source level: here, removing an expression, or more precisely an operand, in
an arithmetic expression is simpler and allows a direct correlation between a
given source instruction and its impact on performance. However, care has to
be taken to make sure that the compiler still performs the same optimizations
in both versions. This can be checked with Maqao to make sure that the
compiler did not further reduce the code or unroll the loops differently.

2. Assembly level: here the corresponding instruction is replaced by a nop
instruction of equivalent size. This case is simpler because we are sure the
compiler will not optimize the code differently. However, it is more tedious to
reason about the dependencies and relate the changes to source instructions.

Combined with memory tracing (Maqao), the DECAN approach enables
precise identification of the “delinquent” loads with poor memory access pat-
terns. For such loads, a proper optimization strategy will either consist of data

8

reshaping or adding software prefetch instructions since the hardware prefetcher
was clearly not doing a good job on the instruction if DECAN resulted in a
noticeable performance gain.

In Section 3.2, DECAN and the memory stride report are used to identify
delinquent loads. We have found there is a significant benefit in understanding
by approaching performance bottlenecks from multiple angles, especially when
they arrive at the same conclusions.

3 Case Studies

Here we show how the methodology previously described was applied to real-life
applications. In the remainder of this section, we will examine two code excerpts,
developed by Recom Services and Dassault-Aviation.

3.1 Experimental Setup

The experimental platform consists of a computation node equipped with four
Xeon X7350 (Tigerton). Each Xeon processor is a quad-core chip clocked at
2.93 GHz, equipped with two 4 MB L2 caches (two cores share one L2 cache),
and 32 kB L1 data cache (private to each core). There are 48 GB of RAM
available on this node.

The Intel C and Fortran Compilers (icc and ifort v10.1) are used to generate
all our assembly codes, as they are state-of-the-art compilers on such a hard-
ware platform. They also are used to generate OpenMP parallel regions when
appropriate.

Intel’s Performance Tuning Utility (PTU) is used to access hardware counters
and perform part of the dynamic analysis.

3.2 Application to a 3D Combustion Simulation Code

Brief description The AIOLOS[15] application provided by RECOM builds a
3D model of industrial-scale furnaces, and in particular, helps solve problems
due to the corrosion of the walls of such a furnace at high temperatures. The
most time-consuming subroutine in AIOLOS is RBgauss, which implements a
red-black iterative solver. The choice of the red-black algorithm allows for easy
parallelization with, for example, OpenMP. The RBgauss subroutine contains
two loops (denoted Red and Black loop) with a communication between them
using MPI. The two loops consists of :

– Red loop: it is an iterating loop over half of the AM array elements (red

elements) to update with the other half of the AM array elements (black). It
means that each red element depends on its four immediate black neighbors.

– Black loop: it has the same structure as the red loop but it updates the black
elements with the red ones (computed in the Red loop).

The following code snippet displays one of the two time-consuming loops
previously described:

A Balanced Approach to Application Performance Tuning 9

DO IDO=1,NREDD

INC = INDINR(IDO)

HANB = AM(INC,1)*PHI(INC+1) &
+ AM(INC,2)*PHI(INC-1) &
+ AM(INC,3)*PHI(INC+INPD) &

+ AM(INC,4)*PHI(INC-INPD) &
+ AM(INC,5)*PHI(INC+NIJ) &

+ AM(INC,6)*PHI(INC-NIJ) &
+ SU(INC)

DLTPHI = UREL*(HANB/AM(INC,7) - PHI(INC))
PHI(INC) = PHI(INC) + DLTPHI

RESI = RESI + ABS(DLTPHI)

RSUM = RSUM + ABS(PHI(INC))
ENDDO

Static analysis According to Maqao , no vector instructions (SSE instructions)
are generated by ifort. However, looking at the Execution Port Usage report,
it becomes apparent that the main bottleneck is memory accesses, specifically
loads from memory. The P2 port (memory loads) shows a much higher score (i.e.
the number of accesses to P2 per iteration) than the other ports.

Looking at the source code, the explanation for not using vector instructions
in the loop is obvious: the AM array is accessed indirectly through the INDINR

index array, which prevents the compiler from knowing whether data accessed
are correctly aligned, even when told so with compilation directives.

Dynamic analysis As both Red and Black loops are singly-nested loops, the
iteration count and the bound are one and the same for each loop. Memory
tracing indicates that the AM and PHI arrays are accessed with a stride 2 basis,
with some gaps from time to time. As the static analysis shows, the most time
consuming operations in this loop are memory loads. Looking at the source code
and loop attribute profiling, it is clear that this routine is memory-bound. As AM
is accessed with a “stride 2” pattern, half of the memory bandwidth is wasted:
only half of the bytes pulled into the cache are actually useful for performing
computations, doubling the number of cache misses. Looking at performance
counters confirms this. Overall, a basis for future optimization has been issued.

In a multicore context, dynamic analysis shows a constant amount of L1D
and L2 cache line consumption, independent of the number of threads used.
Thus, the amount of cache misses per thread is constant, but the amount of
CPU cycles increases, thus reducing the overall speedup to 4 with 16 threads.
This is mainly due to memory bandwidth limitations which prevent memory
bound programs from getting more than a speedup of four.

Decremental Analysis Removing expressions (at the source level) one by one
has an impact on the analysis given by Maqao by decreasing load pressure on
port P2. However, since Maqao cannot distinguish between different strides,
its added-value remains limited in this particular case. However, when iterating
the dynamic analysis with the modified loop, memory behaviors become more
apparent: accesses to PHI occur almost always in cache, whereas accesses to AM

are always RAM-based. The dynamic analysis is applied after the decremental

10

Fig. 4. RBgauss code optimization on unicore.

analysis to account the effect of the removed instruction. DECAN was essential
in this case to identify which memory accesses are causing the contention on
the memory bus. Even if the first application of DECAN does not detect the
delinquent instruction, the analysis is reiterated (removing other instructions)
combining with static and dynamic analyses. In the RBgauss subroutine, the
blocking memory acces is detected with DECAN.

Optimization Since the major bottleneck for this routine is data access from
RAM combined with low spatial locality (stride 2 access), various optimizing
transformations are performed, but only the following has a significant impact
on performance: reshaping array AM for getting rid of the stride 2 access. More
precisely, the array AM is split into two distinct arrays still with indirect access
but stride 1. This is equivalent to reshaping an array of complex numbers by
splitting it into arrays, one containing the real part, the other one containing
the imaginary part.

As expected, the indirect access still prevents the compiler from generating
vector instructions. As such, Maqao is still “blind” to our code transformation.
However, dynamic analysis, and more specifically hardware counter measure-
ments do show that cache misses are almost half what they used to be (Fig-
ure 4(b)). Single core performance has been improved by speedups between 1.2
and 1.3 (Figure 4(a)) thanks to this code transformation.

When performing a new dynamic analysis with multiple threads, memory
saturation is still the main problem, but saturation of the memory bus happens
much later. Hence performance is improved by speedups between 1.3 and 1.4.

3.3 Iterative Solver for the Navier-Stokes Equation

Brief description The ITRSOL[5] application, developed by Dassault-aviation,
solves the Navier-Stokes equation, through the use of Computational Fluid Dy-

A Balanced Approach to Application Performance Tuning 11

Fig. 5. RBgauss speedups on multicore.

namics (CFD), with the help of an iterative solver. The most time-consuming
subroutine in ITRSOL is EUFLUXm, which implements a sparse matrix-vector prod-
uct. The EUFLUXm subroutine contains two groups of quadruply nested loops (2
identical quadruply nested loops in each group).

The following code snippet displays one of the most time-consuming quadru-
ply nested loops:

do cb=1,ncbt
igp = isg

isg = icolb(icb+1)
igt = isg + igp

c$OMP PARALLEL DO DEFAULT(NONE)
c$OMP& SHARED(igt,igp,nnbar,vecy,vecx,ompu,ompl)
c$OMP& PRIVATE(ig,e,i,j,k,l)

do ig=1,igt
e = ig + igp

i = nnbar(e,1)
j = nnbar(e,2)

cDEC$ IVDEP

do k=1,ndof
cDEC$ IVDEP

do l=1,ndof
vecy(i,k) = vecy(i,k) + ompu(e,k,l)*vecx(j,l)

vecy(j,k) = vecy(j,k) + ompl(e,k,l)*vecx(i,l)
enddo

enddo

enddo
enddo

Static analysis The Maqao vectorization report indicates that no vectorization
is performed (no use of SSE instructions). The loads cannot be vectorized due to
the non unit stride on the two vectors but the multiplications and the additions
could have been vectorized by the compiler. However, the Execution Port Usage
report clearly indicates that the vectorization of additions and multiplications
will improve P0 and P1 ports (execution units ports) but not the P2 port (loads
port) which is the bottleneck.

12

Fig. 6. EUFLUXm code optimization on unicore.

Dynamic analysis Loop attribute profiling indicates that the main specific fea-
ture in the 4-level-nested-loops is that the two innermost loop bounds (ndof)
are quite small (4 ≤ ndof ≤ 10). The two outermost trip counts are larger and
vary throughout execution.

Memory tracing shows that the two innermost loops are accessing all of the
arrays along the wrong dimension (row-wise) leading to poor spatial locality.
Moreover, the values of indexes used for accessing the first dimension of all
arrays are not regular and lead to indirect addressing.

In the EUFLUXm code, cache behavior is interesting. PTU detects that for
every iteration, a quarter of a cache line (16 bytes, 2 double precision elements)
are brought into L2. This confirms the fact that the two bi-dimensional vectors
are most likely kept into L2 while the two 3-dimensional arrays are streamed
from RAM.

Decremental analysis Decremental analysis is not necessary for the Eufluxm

benchmark. After applying optimizations deduced from the static and dynamic
analyses, the key performance bottlenecks are mitigated.

Optimization Since the key performance bottleneck for this routine is poor spa-
tial locality (accesses on the wrong dimension), various transformations are per-
formed. Over the various code transformations that are performed on the code,
two have a significant impact on performance: hardwiring ndof and loop inter-
change.

Value specialization involves replacing a variable whose value is unknown
by the compiler ndof by its proper value (in our case 4) to help the compiler
in particular for unrolling. The compiler fully unrolls the two innermost loops
inside the loop nest. As no SIMD instructions were generated, Maqao is fooled
by the fact that the innermost loop is not the one it used to be. Hence no
direct comparison with the previous reports can be made, except that according
to Maqao no loop vectorization occurred. A speedup of 1.5 is observed for
sequential executions.

A Balanced Approach to Application Performance Tuning 13

Fig. 7. ITRSOL speedups on multicore.

The second transformation is done by interchanging the second loop on ig

and the two innermost loops (the ig loop becomes the innermost loop). All of
the arrays are now accessed column-wise. The static analysis of this transforma-
tion with Maqao shows that indirect accesses still prevent the compiler from
vectorizing the loop. Statically, there is no information about the transforma-
tion. However, dynamic analysis shows that interchanging loops substantially
increased the data traffic into L1 but drastically improved performance.Because
of the size of the data set, the L2 traffic remains the same, but the hardware
prefetch behavior is vastly improved Figure 6(b). Figure 6(a)) shows this opti-
mization improves sequential performance by a speedup of 2.5.

In a multicore environment the same optimizations are applied. Variable spe-
cialization has an impact on the overall execution of ITRSOL, but interchanging
loops gives even better results, with a speedup of up to 2.5.

There is no doubt that improving data locality in a unicore environment has
similar effects on a multicore environment, as the memory bus receives fewer
requests. As previously discussed, speedup for memory-bound applications on
the experimental platform cannot be greater than 4 due to bus saturation. Since
the previous experiment was conducted on a 4-thread execution and gave a
speedup around 3.5, it was decided to keep the same amount of threads for
ITRSOL.

4 Related Work

Automatic static analysis of code source generally leads to optimization per-
formed directly inside the compiler [4]. Dolan et al. present a formula to mea-
sure (and then compare) the sensibility of solvers (optimization software) to
input data [7].

Hochstein et al. introduce a methodology to reduce the development time
of an HPC application in addition to its execution time [10]. When it comes to
performance analysis, dynamic analysis is a natural choice. Efforts have been
made to identify the bottlenecks (such as memory contention, communication

14

imbalance leading to idle tasks, etc.) that occur in HPC software [18], as well
as a methodology to better understand parallel applications [3]. It introduces
a methodology which aims a better understanding of large-scale HPC applica-
tions through the case study of an application which is part of the SPEChpc
benchmark suite.

Other efforts have been made to go further, such as using data mining tech-
niques to exploit a knowledge database and apply transformations on the code
to optimize [20]. PerfExplorer [11] also uses data mining to find interactions be-
tween groups of performance metrics and to tune applications for large clusters.

Tallent and Mellor-Crummey propose to measure three metrics to evaluate
how well a parallel, multithreaded program performs (parallel idleness, parallel
overhead, and logical path profiling) [19]. These criteria then help the program-
mer to see when to coarsen or refine concurrency granularity, focus on serial
performance optimization, or even switch parallelization strategies.

This leads to the design of performance tools dealing with static and dynamic
analysis, such as HPCToolkit. It is able to perform binary analysis on an exe-
cutable (rebuilding loop nests and call graphs, identifying inlined routines) and
do a call path profiling at runtime. LoopProf and LoopSampler [13] also work on
binary files and focus on loop profiling, with information such as loop properties,
nesting, self/total count, trip count, etc. Another framework for instrumentation
and measurement of applications is presented by Shande et al. [16]. It describes
a suite of performance analysis tool based on PAPI and TAU[17] tools. The
profiling with HPM and a tracing tool are applied to extract various types of
measurements on Matrix-Multiply and PETSc benchmarks.

Finally, numerous processor vendors propose guides to apply efficient opti-
mization techniques to reduce execution time [12, 2]. However, they generally
tend to be extremely low-level (at the assembly level) and do not really describe
how to diagnose a bottleneck.

5 Conclusion and Future Work

While the tools and methodology presented in this paper represent progress to-
ward making the optimization process easier and less time consuming, much
work still remains in streamlining the analysis process. The reports gathered
via memory tracing are currently processed manually, so there are opportunities
automatic analysis to identify the key components. Decremental analysis shows
great potential, but it is currently subject to trial and error. We are developing
tools to automatically identify dependent instructions to safely patch instruc-
tions at the binary level without having to consider potential interactions with
the compiler.

In this work, we present a methodology to provide a semi-automatic way of
analyzing and understanding performance issues for high-performance comput-
ing applications. This was done using a combination of different tools: Maqao ,
HPM counters, loop attribute profiling, and memory tracing are used to perform
static and dynamic analysis. Decremental analysis is used to identify the root
cause of certain bottlenecks. Better execution times are achieved for kernels used
in real-life applications, with speedups of up to 2.5.

A Balanced Approach to Application Performance Tuning 15

References

1. A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, and D. Ryabt-
sev. Parallelization made easier with intel performance-tuning utility, 2007.

2. AMD. Software optimization guide for amd family 10h processors.
3. B. Armstrong and R. Eigenmann. A methodology for scientific benchmarking with

large-scale applications. pages 109–127, 2001.
4. K. D. Cooper and L. Xu. An efficient static analysis algorithm to detect redundant

memory operations. SIGPLAN Not., 38(2 supplement):97–107, 2003.
5. Q. V. Dinh, A. Nam, and G. Petit. Projet fame2: rapport final de synthse sur

l’optimisation des logiciels de simulation numrique de l’aronautique, 2007.
6. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W. Jalby.

Exploring application performance: a new tool for a static/dynamic approach. In
Los Alamos Computer Science Institute Symp., Santa Fe, NM, Oct. 2005.

7. E. D. Dolan and J. J. Mor. Benchmarking optimization software with performance
profiles, 2001.

8. S. Eranian. Perfmon2: a flexible performance monitoring for linux, 2006.
9. S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph execu-

tion profiler. In SIGPLAN ’82: Proceedings of the 1982 SIGPLAN symposium on
Compiler construction, pages 120–126, New York, NY, USA, 1982. ACM.

10. L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili. Parallel programmer
productivity: A case study of novice parallel programmers. In SC ’05: Proceedings
of the 2005 ACM/IEEE conference on Supercomputing, pages 35+, Washington,
DC, USA, 2005. IEEE Computer Society.

11. K. A. Huck and A. D. Malony. Perfexplorer: A performance data mining framework
for large-scale parallel computing. In SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 41, Washington, DC, USA, 2005. IEEE Com-
puter Society.

12. Intel. Intel 64 and ia-32 architectures optimization reference manual.
13. T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying potential par-

allelism via loop-centric profiling. In Proceedings of the 2007 International Con-
ference on Computing Frontiers, May 2007.

14. P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to
hardware performance counters. In In Proceedings of the Department of Defense
HPCMP Users Group Conference, pages 7–10, 1999.

15. B. Risio, N. Passmann, F. Wessel, and E. Reinartz. 3d-flame modelling in power
plant applications. 2008.

16. S. Shende, A. Malony, S. Moore, P. Mucci, and J. Dongarra. Integrated tool
capabilities for performance instrumentation and measurement. 2007.

17. S. S. Shende and A. D. Malony. The tau parallel performance system. The Inter-
national Journal of High Performance Computing Applications, 20:287–331, 2006.

18. D. Skinner and W. Kramer. Understanding the causes of performance variability
in hpc workloads. In In International Symposium on Workload Characterization,
2005.

19. N. R. Tallent and J. M. Mellor-Crummey. Effective performance measurement
and analysis of multithreaded applications. In PPoPP ’09: Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 229–240, New York, NY, USA, 2009. ACM.

20. V. S. Verykios, E. N. Houstis, and J. R. Rice. A knowledge discovery methodology
for the performance evaluation of scientific software. Neural, Parallel & Scientific
Computations, 8:115–132, 2000.

