
CO DESIGNING A HIGH
PERFORMANCE AND
PORTABLE LIBRARY
(QMCKL): ONE OF THE
MAJOR CHALLENGES
ADDRESSED BY TREX CoE

A. Scemama, V.G. Chilkuri (Univ Toulouse),
P. De Oliveira, C. Valensi, W. Jalby (UVSQ)

TREX Mission: To develop, promote, and maintain
open-source, exascale-ready software solutions in (stochastic) quantum

chemistry
Materials modeling at the nanoscale with extreme accuracy

20/06/20222

Scientists in quantum chemistry,
physics, and machine learning

Software and HPC experts

Tech and communication SMEs

Representative of user communities

TREX in a nutshell

20/06/20223

What: Use Quantum Monte Carlo Methods

➢ Highly accurate

➢ Massively parallelizable (multiple QMC trajectories)

➢ No Blocking communications

➢ CPU intensive (difficult to exploit)

Objective: Make codes ready for exascale

How: Instead of re-writing codes, provide libraries

➢ A library for exchanging information between codes:

TREXIO Enables HTC

➢ A library for high-performance numerical computation:

QMCkl Enables HPC

Create a platform of interoperable flagship codes extendable
and/or operable with codes outside TREX

TREX: Targeting REal chemical accuracy at the EXascale

20/06/20224

1. PRODUCTIVITY: Used and developed by scientists, can be called from different languages

2. PORTABILITY: available on large number of hardware and software platforms

3. PERFORMANCE: Must be efficient

“Classical” challenge : be good simultaneously on the 3 objectives. There is a workshop at SC devoted to this
triple objective.

We need to go beyond these classical objectives:

➢ Not only performance but also energy consumption should be a major goal

➢ Numerical accuracy is extremely important

QMCKL Objectives/constraints

Objectives

20/06/20225

1. Focus and Specialization: focused on well identified objectives (not
general)

2. Ease of interaction with software and hardware environment: beyond
classic portability

3. Use of Advanced Tuning Tools: adaptable library via tools instead of static
library

Major Axes in QMCKL development

Major axes/guidelines

20/06/20226

1. Application target = QMC: use of high degree of parallelism present in most QMC applications. Focus on
single node/core implementations

2. Focus on a few reference platforms: CPU (ISA: X86 + ARM Neoverse), GPU

3. Specific needs of our target applications: for example no need of general arbitrary size Matrix Multiplies.
Many of our apps are using Rank K Updates: (MxK) x (KxM) with K much smaller than M

GOOD NEWS:

• For our propose (scientific computing) X86 and ARM general architecture share a lot of common
characteristics with secondary differences which can be dealt with automatically

• CPU and GPU all strongly require vectors…. But memory constraints are very different

Focus and Specialization

Objectives

20/06/20227

1. Interaction with context: routines available in source form so compiler can inline and optimize through
calls

2. Develop optimized but generic code versions: use tools for generating highly optimized and specific
version

3. Strongly structure arrays within the library: systematic use of tiled arrays for improving memory
hierarchy usage

4. Systematic use of (1+n) library versions: a pedagogical/reference version and several optimized versions

5. OPEN SOURCE + STANDARDS: easy to modify and integrate. Strong use of standard: OpenMP directives
for GPU and vectorization

Ease of Interaction with hardware and software

Objectives

20/06/20228

1. Obtain high performance across a large range of platforms (first CPU)

2. Provide input for compilers/library/hardware designers

Approach

• Start from the generic version perform first level (generic) optimization following tools guidance

• Perform detailed analysis of hardware and software interaction (including low level)

• Use tools (MAQAO) to automate info gathering and performance comparison

• Use tools (MAQAO) for generating specialized versions in partocular auto tuners for last mile optimization

CO DESIGN

Objectives

20/06/20229

1. Profile categorizations: time spent in libraries, binary, loops (innermost/outermost), etc…

2. Flow complexity: number of paths, presence of calls, etc…

3. Array access: unit/non unit stride access, indirect

4. Vectorization: not only amount of vector instruictions but also assess vectorization quality

IMPORTANT:

• All of the above analysis is performed at the ASM level (either statically or dynamically at run time)

• This analysis depends upon compiler and processor used

GOOD NEWS: we can test various compilers and hardware and perform comparative studies. Very usefull
for vectorization.

MAQAO Detailed analysis

Key issues analyzed

20/06/202210

1. Perfect OpenMP/MPI/Pthread: suppress time spent in these parallelism libraries

2. Perfect OpenMP/MPI/Pthread + Perfect Load balancing: suppress time spent in these parallelism
libraries + perform perfect load balancing

3. Perfect compiler: gets rid of all of the “integer” operations

4. Perfect arithmetic FP vectorization: assumes arithmetic FP vectorization

5. Perfect Full vectorization: assumes arithmetic FP + Load/Store vectorization

6. L1 data access: assumes that all data access are performed from L1

IMPORTANT: all of these performance estimates are computed at the loop level but their performance impact
is extrapolated at the whole application.

MAQAO: WHAT IF SCENARIO

Provide performance estimates when specific optimizations are triggered

20/06/202211

Target: Unicore Skylake Xeon(R) Platinum 8170 + ICC/IFORT 2021 –O3

MAQAO ANLYSIS OF JASTROW ROUTINE: LOOP LEVEL

20/06/202212

Target: Unicore Skylake Xeon(R) Platinum 8170 + ICC/IFORT 2021 –O3

MAQAO ANLYSIS OF JASTROW ROUTINE: GLOBAL LEVEL

20/06/202213

Target: Unicore Skylake Xeon(R) Platinum 8170 + ICC/IFORT 2021 –O3

MAQAO ANLYSIS OF JASTROW ROUTINE

20/06/202214

1. Oriented towards performance/portability/productivity but with customized objectives

2. Focused and specialized

3. Easy to interact with

4. Strongly focused on co design

5. Using systematically software tools: multiple versions depending upon target architectures

STATUS:

• A first X86 version available

• GPU and ARM first versions available within 12 to 18 months

Conclusions

QMCkl: a QMC driven library

l

20/06/202215

➢TREX web site: https://trex-coe.eu

➢TREXIO: https://github.com/trex-coe/trexio

➢QMCkl: https://github.com/trex-coe/qmckl

➢QMCkl documentation: https://trex-coe.github.io/qmckl

➢MAQAO: http://www.maqao.org

➢Verificarlo: https://github.com/verificarlo/verificarlo

WEBSITES

https://trex-coe.eu/
https://github.com/trex-coe/trexio
https://github.com/trex-coe/qmckl
https://trex-coe.github.io/qmckl
http://www.maqao.org/
https://github.com/verificarlo/verificarlo

20/06/2022Numerical Accuracy16

Preserve numerical accuracy for new architectures, parallel runtimes, optimizations.
Verificarlo is a tool for assessing the precision of floating point computations.

• Find numerical bugs in codes [1]
• Stochastic arithmetic to simulate round-off and

cancellations
• Localization techniques to pinpoint source of

errors
• Track precision through CI framework

• Optimize precision [2]
• Simulate custom formats for mixed precision

(float, bf16)
• Tune precision in math library calls

Numerical Accuracy

github.com/verificarlo/verificarlo GPL v3

[1] Numerical uncertainty in analytical pipelines leads to impact ul variability in brain networks. Kiar et al. 2021 PLOS ONE.
[2] Study of the effects and benefits of Custom-Precision Mathematical libraries in HPC codes. Brun et al. 2021 IEEE TETC.

https://github.com/verificarlo/verificarlo

20/06/2022Numerical Accuracy

17

Numerical accuracy: some applications

First implementation
of Woodbury + Splitting
Accuracy is too low.

Git commits (QMCkl – SMWB kernels)

Simplify intermediate
products. No effect
on accuracy.

Fix numerical bug
(group splits at the end
of update queue).

Track kernel accuracy during the
development process of QMCkl.

Harness mixed-precision: 30% speed-up
in deflated conjugate gradient (560 cores
/ YALES2). [3]

Convergence
is preserved
and…

…the
deflated
solver runs
on single
precision.

[3] Automatic exploration of reduced floating-point representations in iterative methods. Chatelain et al. Europar’19.

20/06/202218

1. Use of automatic generation tools: from a high level generic ASM generate X86 and ARM versions. This
will allow to directly embed low level code (“ASM volatile”).

2. Use of autotuning tools: very useful for last mile optimization, explore automatically different code
variants and parameters.

3. Use of advanced performance analysis tools: monitor not only vectorization ration (% of vector
instructions) but also vectorization efficiency (vector width used).

4. Use of numerical accuracy monitoring tools: in particular identify code fragments sensitive to accuracy.

Use of Advanced Tuning tools

Objectives

20/06/202219

A few hundreds of source code lines but restructured for heavy
use of dense matrix multiplication operations

QMCKL Routine : JASTROW computation

