1224

Targeting Real chemical accuracy at the EXascale

CO DESIGNING A HIGH
PERFORMANCE AND
PORTABLE LIBRARY
(QMCKL): ONE OF THE
MAJOR CHALLENGES
ADDRESSED BY TREX CoE

A. Scemama, V.G. Chilkuri (Univ Toulouse),
P. De Oliveira, C. Valensi, W. Jalby (UVSQ)

- Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

TR=>€

TREX Mission: To develop, promote, and maintain
open-source, exascale-ready software solutions in (stochastic) quantum
chemistry
Materials modeling at the nanoscale with extreme accuracy

» Scientists in quantum chemistry,

OF TWENTE. PO 17873 physics, and machine learning
SISSA
x Software and HPC experts
UNIVERSITE DE @‘”’é ~ . .
VERSAILLES S MEGWARE x Tech and communication SMEs

x Representative of user communities

@eos niversitat con. i
QU LS rust- ervices
K' i wien Politechnika todzka 3' Communicating ICT to markets

vvvvvvvvvvvvvvvvvv
llllllllllllllllllllll

P 20/06/2022

r@q _->< TREX: Targeting REal chemical accuracy at the EXascale

What: Use Quantum Monte Carlo Methods

> Highly accurate
> Massively parallelizable (multiple QMC trajectories)

> No Blocking communications

. Ny
o > CPU intensive (difficult to exploit)

? dassfca\ Ruantom y Objective: Make codes ready for exascale

S How: Instead of re-writing codes, provide libraries

§ _!I? > A library for exchanging information between codes:

< | TREXIO mm) Enables HTC
> A library for high-performance numerical computation:
- r:eug;; QMCkl == Enables HPC

i Create a platform of interoperable flagship codes extendable

Computalionsd C'OS[: and/or operable with codes outside TREX

3 20/06/2022

R _->< QMCKL Obijectives/constraints

Objectives

1. PRODUCTIVITY: Used and developed by scientists, can be called from different languages
2. PORTABILITY: available on large number of hardware and software platforms
3. PERFORMANCE: Must be efficient

“Classical” challenge : be good simultaneously on the 3 objectives. There is a workshop at SC devoted to this
triple objective.

We need to go beyond these classical objectives:

> Not only performance but also energy consumption should be a major goal

> Numerical accuracy is extremely important

4 20/06/2022

R _->< Major Axes in QMCKL development

Major axes/guidelines

1. Focus and Specialization: focused on well identified objectives (not
general)

2. Ease of interaction with software and hardware environment: beyond
classic portability

3. Use of Advanced Tuning Tools: adaptable library via tools instead of static
library

) 20/06/2022

TR=>€

Objectives
1. Application target = QMC: use of high degree of parallelism present in most QMC applications. Focus on
single node/core implementations
2. Focus on a few reference platforms: CPU (ISA: X86 + ARM Neoverse), GPU

3. Specific needs of our target applications: for example no need of general arbitrary size Matrix Multiplies.
Many of our apps are using Rank K Updates: (MxK) x (KxM) with K much smaller than M

GOOD NEWS:

« For our propose (scientific computing) X86 and ARM general architecture share a lot of common
characteristics with secondary differences which can be dealt with automatically

« CPU and GPU all strongly require vectors.... But memory constraints are very different

6 20/06/2022

R _->< Ease of Interaction with hardware and software

Objectives

1. Interaction with context: routines available in source form so compiler can inline and optimize through
calls

2. Develop optimized but generic code versions: use tools for generating highly optimized and specific
version

3. Strongly structure arrays within the library: systematic use of tiled arrays for improving memory
hierarchy usage

4. Systematic use of (1+n) library versions: a pedagogical/reference version and several optimized versions

5. OPEN SOURCE + STANDARDS: easy to modify and integrate. Strong use of standard: OpenMP directives
for GPU and vectorization

7 20/06/2022

1R=>X€

Objectives

1. Obtain high performance across a large range of platforms (first CPU)

2. Provide input for compilers/library/hardware designers

Approach

- Start from the generic version perform first level (generic) optimization following tools guidance
- Perform detailed analysis of hardware and software interaction (including low level)

« Use tools (MAQAO) to automate info gathering and performance comparison

« Use tools (MAQAO) for generating specialized versions in partocular auto tuners for last mile optimization

8 20/06/2022

TR=>€

Key issues analyzed

1. Profile categorizations: time spent in libraries, binary, loops (innermost/outermost), etc...
2. Flow complexity: number of paths, presence of calls, etc...
3. Array access: unit/non unit stride access, indirect

4. \Vectorization: not only amount of vector instruictions but also assess vectorization quality

IMPORTANT:

« All of the above analysis is performed at the ASM level (either statically or dynamically at run time)
 This analysis depends upon compiler and processor used

GOOD NEWS: we can test various compilers and hardware and perform comparative studies. Very usefull
for vectorization.

9 20/06/2022

TR=>€

Provide performance estimates when specific optimizations are triggered

1. Perfect OpenMP/MPI/Pthread: suppress time spent in these parallelism libraries

2. Perfect OpenMP/MPI/Pthread + Perfect Load balancing: suppress time spent in these parallelism
libraries + perform perfect load balancing

3. Perfect compiler: gets rid of all of the “integer” operations
4. Perfect arithmetic FP vectorization: assumes arithmetic FP vectorization
5. Perfect Full vectorization: assumes arithmetic FP + Load/Store vectorization

6. L1 data access: assumes that all data access are performed from L1

IMPORTANT: all of these performance estimates are computed at the loop level but their performance impact
is extrapolated at the whole application.

20/06/2022

rQ _-)(MAQAO ANLYSIS OF JASTROW ROUTINE: LOOP LEVEL

Target: Unicore Skylake Xeon(R) Platinum 8170 + ICC/IFORT 2021 —03

» Colums Filter

Speedup If | Speedup If | Speedup If SEEEiD L
Loop . . Coverage | Vectorization | Vectorization P P P P P p Perfect Load |Stride Stride Stride| Stride
id Source Location| Source Function | Level run_0 (%) Ratio (%) Efficiency (%) No Scalar FP Fully Balancing 0 ; n | Unknown
- Integer Vectorized | Vectorized run 0

ekl asiton . Amekl_compute.f

703 90:20882105 a?toneen_denv_elnnennost 1.3 1.21 1 1 12 0]
libgmckl.s0.0 - g gmckl_compute_f

602 mckl_jastrow_f.F actor_een_rescale Innermost 1 1 1 0 6 0 0
90:798-815 d_e_deriv_e_f
libgmckl.s0.0 - g gmckl_compute_f

640 mckl_jastrow_f.F actor_een_rescale Innermost 1 1 1 0 6 0 0
90:1050-1067 d_n_deriv_e_f
libgmckl.s0.0 - g gmckl_compute_e

155 mckl_jastrow.c:1 en_rescaled_e_hp Innermost 1 1 1 0 2 0 2
649-1653 C
libgmckl.s0.0 - g gmckl_compute_f

603 mckl_jastrow_f.F actor_een_rescale Innermost 1 1 1 0 2 0 4
90:798-815 d_e_deriv_e_f
libgmckl.s0.0 - g gmckl_compute_f

606 mckl_jastrow_f.F actor_een_rescale Innermost 1.02 1.35 1 0 5 0 0
90:784-789 d_e_deriv_e_f
libgmckl.s0.0 - g gmckl_compute_e

161 mckl_jastrow.c:1 en_rescaled_e_hp Innermost 1.2 1.5 1 0 0 0 0

630-1633 C

20/06/2022

r@q _->< MAQAO ANLYSIS OF JASTROW ROUTINE: GLOBAL LEVEL

Target: Unicore Skylake Xeon(R) Platinum 8170 + ICC/IFORT 2021 —03

Total Time (s) 54 83
Profiled Time (s) 52.76
Time in analyzed loops (%) 30.9
Time in analyzed innermost loops (%) 29.8
Time in user code (%) 31.3

Compilation Options

Perfect Flow Complexity

Iterations Count

Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread

Perfect OpenMP + MPI + Pthread + Perfect Load Distribution
Potential Speedup

Nb Loops to get 80%
Potential Speedup

Nb Loops to get 80%

No Scalar Integer

FP Vectorised

. Potential Speedup 1.25

Fully Vectorised Nb Loops to get 80% 6
Potential Speedup 1.10

Data In L1 Cache Nb Loops to get 80% 1
. . Potential Speedup 1.16

FP Arithmetic Only Nb Loops to get 80% 7

20/06/2022

rR _->< MAQAOQO ANLYSIS OF JASTROW ROUTINE

Target: Unicore Skylake Xeon(R) Platinum 8170 + ICC/IFORT 2021 —03

@ Analysis [CQA speedup if no scalar integer () CQA speedup if FP arith vectorized [CQA speedup if fully vectorized Number of paths () Vectorization Ratio (%)
() Vectorization Efficiency (%) ORIG / DL1 (JSaturation ratio (MAX(DL1,LS)/REF) Saturation FP/CQA(FP) DL1/CQA(DLT) FP/LS

ORIG (cycles per iteration) @ STA (ORIC) REF (cycles per iteration) STA (REF) FP (cycles per iteration) STA (FP) LS (cycles per iteration) STA (LS)
DLT (cycles per iteration) STA (DL1) FES (cycles per iteration) @ STA (FES) CQA cycles CQA cycles if no scalar integer

CQA cycles if FP arith vectorized CQA cycles if fully vectorized Iteration count Function Source Nb FP_ADD / CPI Nb FP_MUL / CPI CAP(FP)
BW(FP) SAT(FP) CAP(L1R) BW(LTR) SAT(LIR) CAP(LTW) BW(LTW) SAT(LTW) CAP(L2) BW(L2) SAT(L2) CAP(L3)

BW(L3) SAT(L3) CAP(RAM_R) CAP(RAM_W)

ST el . (3'2155 STA (csslis STA (cchI:es STA (cylfles STA (c%'es
ID Module (‘iﬂi:l[;?. Analysis p;i;.s DI/_I Saturation FP/CQA(FP)DL1/CQA(DL1)|FP/LS per |(ORIG) per (REF) per (FP) per |(LS) —
iteration) iteration) iteration) iteration) iteration)
|/ ez s , libamckl.s0.0 12.56 RAMbound 1 3.81 1.21 1.36 0.16 9574 | 0.75 | 114.41 |0.48 17.54 0.04 112.36 0.46 25.13
o Bucket 7 66.99 RAM bound 1 3.81 1.21 1.36 0.16 95.74 | 0./5 | 114.41 |0.48| 1/.54 (0.04] 112.36 |0.46| 25.13
o Bucket 6 18.57 RAM bound 1 2.75 1.19 1.36 0.28 69.18 | 0.55| 72.46 |0.48| 17.28 |0.09] 61.54 |0.51| 25.13
o Bucket 8 13.42 RAM bound 1 6.12 1.20 1.36 0.13 154.00 | 0.36 | 143.49 |0.79| 17.44 0.10] 134.72 |0.35 25.18

20/06/2022

TR=>€

QMCkl: a QMC driven library

1. Oriented towards performance/portability/productivity but with customized objectives
2. Focused and specialized

3. Easy to interact with

4. Strongly focused on co design

5. Using systematically software tools: multiple versions depending upon target architectures

STATUS:
« A first X86 version available
« GPU and ARM first versions available within 12 to 18 months

20/06/2022

=>4

> TREX web site: https://trex-coe.eu

» TREXIO: https://github.com/trex-coe/trexio

» QMCKkl: https://github.com/trex-coe/gmckl

» QMCkl documentation: https://trex-coe.github.io/gmckl
> MAQAO: http://www.maqao.org

» Verificarlo: https://github.com/verificarlo/verificarlo

20/06/2022

https://trex-coe.eu/
https://github.com/trex-coe/trexio
https://github.com/trex-coe/qmckl
https://trex-coe.github.io/qmckl
http://www.maqao.org/
https://github.com/verificarlo/verificarlo

TR=>€

Preserve numerical accuracy for new architectures, parallel runtimes, optimizations.
Verificarlo is a tool for assessing the precision of floating point computations.

 Find numerical bugs in codes [1]

- Stochastic arithmetic to simulate round-off and
cancellations

« Localization techniques to pinpoint source of
errors

e rlfl CO rl O « Track precision through Cl framework

« Optimize precision [2]

« Simulate custom formats for mixed precision
(float, bf16)

« Tune precision in math library calls

github.com/verificarlo/verificarlo GPL v3

[1] Numerical uncertainty in analytical pipelines leads to impact ul variability in brain networks. Kiar et al. 2021 PLOS ONE.
[2] Study of the effects and benefits of Custom-Precision Mathematical libraries in HPC codes. Brun et al. 2021 IEEE TETC.

Numerical Accuracy 20/06/2022

https://github.com/verificarlo/verificarlo

[[
rQ —>< Numerical accuracy: some applications
O] |

Track kernel accuracy during the Harness mixed-precision: 30% speed-up

development process of QMCkI. in deflated conjugate gradient (560 cores
/ YALES2). [3]

Significant digits s Deﬂated par‘t
70990 T First implementation ra— 100
1 of Woodbury + Splitting - £ .
1 Accuracy is too low. | U 0T ES
6.000e+0 T E % E
o T "7 Convergence
] Simplify intermediate 0 is preserved
5.000e+0 products. No effect c 30 and...
on accuracy. =
: e B ..the
4.000e:0 \ Fix numerical bug g 10 \ deflated
Z * - —f (group splits attheend | = : \ solver runs
1 | | | of update queue). 0 50 10 60 on single
' ' ' I ' ' lteration . o
Git commits (QMCkl — SMWB kernels) precision.

[3] Automatic exploration of reduced floating-point representations in iterative methods. Chatelain et al. Europar’19.

Numerical Accuracy 20/06/2022

TR=>4

Objectives

1. Use of automatic generation tools: from a high level generic ASM generate X86 and ARM versions. This
will allow to directly embed low level code (“ASM volatile”).

2. Use of autotuning tools: very useful for last mile optimization, explore automatically different code
variants and parameters.

3. Use of advanced performance analysis tools: monitor not only vectorization ration (% of vector
instructions) but also vectorization efficiency (vector width used).

4. Use of numerical accuracy monitoring tools: in particular identify code fragments sensitive to accuracy.

20/06/2022

rR _">< QMCKL Routine : JASTROW computation

A few hundreds of source code lines but restructured for heavy
use of dense matrix multiplication operations

The initial equation implemented in CHAMP is:

Nowd Naoe i—1 Npgeg p—1 p—k—284

Jeen(r, R) EZEZ Z Z Clicpa (Tij) [m]I + {Rja]lt] [Ria Rj.:.)[”_k'”-”

a=1 i=1 j=1 p=2 k=0 =0

It was rewritten as
Nood B—1 P—k—283 o N, i Niyjoe

Ieen{r R Z ‘-':“fpctz ﬁ'i:ct,{p—ﬁ:—!],."z f’:‘,r:::.ﬂ.-_.lfp—kﬂjf?

=2 k= {=0 =1 i=1

with

20/06/2022

