Generalization of the Decremental Performance
Analysis to Differential Analysis

Zakaria Bendifallah

advisors
Pr. William jalby
Jean-Thomas Acquaviva

UVSQ - Perfcloud, Exascale Computing Research

universiTe pi W
VERSAILLE

| S W
ST-QUENTIN-EN-YVELINES

universitd earis-sactay PERFCLOUD

Exascale oo

Application performance analysis

Application performance analysis is becoming a difficult art ! J

application bottleneck (lmprove performance)
characterization detection

@ Complex software: thousands of lines and several programing
paradigms

@ Multiple granularities: cluster level, node level, core level

@ Wide range of analysis tools and techniques with different
accuracies and overheads

Bottleneck detection

@ Detect if a performance pathology limits performance

@ Done in two phases

detect the performance _, [determine is the pathology is
pathology a bottleneck

Fine grain bottleneck detection

@ Done at the node level (processor, core) and deals with
processor complexity
e Out of order execution
e Complex memory sub-system

A\

Bottleneck detection: Hardware counters

A set of counters that can monitor various hardware generated events)

@ Not the same between different micro-architectures

@ Good in estimating only quantity not cost

@ Difficulty to correlate with source code

A promising technique: Decremental Analysis

A measurement technique based on modification of the program J

Binary loop (original) Binary loop (modified)
MOVAFS (2eRDI, %R 8,8), %xXMM2 MOVAFS (2eRDI, %R 8,8), %xXMM2
MULPD %xXMM1, %exXMM2 MULPD %xXMM1,%XMM2
ADDFD (%0R9,%6R8,8),%XMM2 SEERE—eR O LR S Lo
MOVAPS %xXMM2,(%R9,%R8,8) IS RS viv 2 (oSSR e
MOVAPS 0x10(%RDI,%R8,8),%0XMM3| | MOVAPS 0x10(%RDI,%R8,8), %XMM3
MULPD %xXMM1,%XMM3 MULPD %xXMM1,%XMM3

ADDFD 0x10(%6R9,%R8,8),%xXMM3 ADDFD Ox10(%R9,%R8,8),%XMM3
MOVAPS %xXMM3,0x10(%R9 %R 8,8) MOVAPS %XMM3,0x10(%R9,%R 8,8)

B 402d60 B 402d60

L] Y

Run and compare performances

A promising technique: Decremental Analysis

@ Accurate pinpointing of delinquent instructions

@ Associates a cost to a group of instructions

@ Good correlation to binary source code

4

Technical choices

@ Binary level analysis (binary patching tool DECAN)
[Source code] — [Compiler] — [Assembly code j

@ Loop centric (innermost loops)

A\

A promising technique: Decremental Analysis

@ Simple view of a pathology (= instruction)

@ Simple transformation process (no flexibility)
@ Poor handling of semantic loss (In-vitro)

@ Sequential codes only

Technic hallenges

Contributions

@ Design, test and validate new techniques and use cases to
Decremental Analysis

@ More sophisticated transformation process
@ Extend and fine tune the technical part:

o Side effects management
o Parallel codes support
o Precise measurements process

@ Integrate DECAN into an analysis methodology (PAMDA)

Outline

@ Differential Analysis
@ Technical challenges
© PAMDA

© Conclusion

Differential Analysis
°

Differential Analysis

Overview

Differential Analysis

@ Continuity of Decremental Analysis

e More elaborate analyses
o More advanced transformation process

@ Relies and extends the same binary patching tool: DECAN

Differential Analysis
00

Principles of Differential analysis

Terminology

Loop variant

A version of the loop in which assembly instructions have been
modified.

DECAN variant
The binary resulting from the process of loop variant creation

10/44

Differential Analysis
oe

Principles of Differential analysis

Loop variant creation

Identify instruction N Construct transformations
subsets requests

Examples of

Instruction subsets Examples of transformations
@ Load & store @ Deletion
@ FP arithmetic @ Replacement
@ Division @ Modification

@ Reduction

11/44

Differential Analysis
©0000000

Base analyses

Memory and arithmetic streams analysis - LS/FP

Arithmetic operations are deleted memory operations are deleted

MOVAFS %xXMMZ,(%R9,%RE,8) MOVAPS %XMM2,(%R9,%R8,8)
MOVAPS 0x10(%RDI,%R8,8),%XMM3 MOVAPS 0x10(%RDI,%R8,8),%{MM3
MULPD %XMM1,%XMM3 MULFD %X MMIL,%XMM3

ADDPD 0x10(%R9,%R8,8),%XMM3 ADDPD 0x10(%R9,%R8,8),%XMM3

MOVAFS %xXMM2,(%R9,%R8,8)

MOVAFS O0x10(%RD1,%RE,8),%XMM3
MULFD %XMML,%XMM3
MOVAPS 0x10(%R9,%R8,8),%XMM3 ADDFD %XMM3,%XMM3

@ CPU and memory sub-system behaviours highlighted
independently

12/44

Differential Analysis
0®000000

Base analyses

Memory and arithmetic streams analysis - LS/FP

NR codelet balanc3 - Intel SNB

== Reference
wdr= FP
el]

Execution time (cycles per iteration)

CEELESS P

Data size [NB elements]

13/44

Differential Analysis
00®00000

Base analyses

Memory operations investigation - DL.1

Replace a memory access to a data structure by an access to a
single memory location

MOVAFS (%RDI,%RS8,8),%6XMM2 H MOVAFS 456876(%RIP),%XMWM2 |

@ Simulates the case of an ideal memory bahaviour (L1 access)

14/44

Differential Analysis
00080000

Base analyses

Memory operations investigation - DL.1

NR codelet Balanc3 - Intel SNB
35

30
25
20
15
10

=#- Reference
-o=DL1

Execution times (cycles per iteration)

5
0
R

Data size [NB elements]

15/44

Differential Analysis
0000000

Base analyses

Memory operations investigation - S2L

Transform a store operation into a load operation I

’ MOVAPS %XMM2,(%RDI,%R8,8) H MOVAFS (%RDI,%R8,8),%xXMWM2 |

@ Disables all the cache effects caused by stores (cache
coherency issues)

16/44

Differential
00000®

Base analyses

Memory operations investigation - S2L

25 RTM kernel - 4 threads - Intel SNB E3-1240
E 20
o
&
s W original
® 15
o B sz
g] no_sTORES
10 -
2
3
@
5 s
0
I 8§ § § § § § 5 %
§§EEE§§§§

Loop ID

17/44

Differential Analysis
00000080

Base analyses

Concerns

@ Destroying loop semantic can corrupt the control flow

@ Transforming instructions may change the entire behaviour of the
loop

@ How are parallel codes handled

@ How good measurements are

18/44

Differential Analysis
00000008

Base analyses

Outline

@ Differential Analysis
@ Technical challenges
© PAMDA

© Conclusion

19/44

Technical challenges
°

The tool: DECAN

DECAN variant creation process

N (MAQAO: BuildIR
e - - CFG
ol MADRAS Instruction lis cG
" Disassembles binar -
Y -DDG
Binary - ________________ MM--
IR
/'—'\
Patch requests_ | MADRAS
- Patches binary
Q- ol
'f.'|!!:
New binary

20/44

Technical challenges
©0000

Dealing with semantic loss

Control flow corruption

For (cond){

If(cond){

lelse{
}
For(cond){ @ Inner control flow
or(con

@ Outer control flow
:
If(cond){

1 21/44

Technical challenges
00000

Dealing with semantic loss

Inner control flow: instruction blacklist

MOVAPS (%RDI,%R8, 8) , BxXMM2

MULPD %XMM1, %XMM2 Instruction blacklist

MOVAPS 0x10 (%RDI,%R8,8) , $XID03

MULPD SXMML , $XMM3 .

"ADD OxG1523(%R13), SoRIT | ° .Constru.ctlon of Loop control
ADDPD 0x10 (%R9,%R8, 8) , SXMM3 instructions subset

MOVAPS %XMM3 , 0x10 (%R9, %R8, 8)
@ blacklist the subset

CMP '9%RDX, %R11
B 402d60

22/44

Technical challenges
00@00

Dealing with semantic loss

Outer control flow: instance mode

No
If loop_call = i

Instance mode

Start probe

@ Two variants of the loop

@ Early end of program execution
LS variant Oxljgma] .
oop @ Sampling on loop calls
Y
‘ Exit program ‘ rong:léimpirsgram

23/44

Technical challenges
00000

Dealing with semantic loss

Outer control flow: recovery mode

Recovery mode

__ @ Two variants of the loop
Original
loop

LS variant

@ Full program execution

Stop probe

Context restore

Continue program
execution

24/44

Differential

PAMDA

Dealing with semantic loss

Other side effects

Side effect

Workarounds

Code layout change

Replace deleted instructions with NOPs

Data dependency

Micro-benchmarking to detect dependency
subtleties

Variable latency
instructions

Control latency by loading the operands

Floating point
exceptions

Deactivate software exception handling

25/44

Technical challenges
[I}

Parallel codes support

Parallel codes: thread based

If thead_id =/ If thead_id =/

Start probe i

Start probe i

If thead_id =
j#i

Operatory modes

LS variant DL1 variant
@ (A) Homogeneous

@ (B) Heterogeneous

7

(A) (8)

26/44

Technical challenges
oe

Parallel codes support

Parallel codes: process based

@ Each process is considered as an individual application

@ All processes execute the same loop variant

@ Each process has its own reports

27744

Technical challenges
€000

Measurements

Measurements: Studied aspects

@ Related to the reproducibility of measurements

@ Also known as measurement bias

Precision

@ Related to probe placement and lightweightness
@ The ability to measure only the events of the target area

Intrusiveness

@ Related to probe quality
@ The ability to separate probe noise from the measurements

\

28/44

Technical challenges
0®00
Measurements

Experimental methodology

@ Measurements were done on 22 NR codelets
@ Several data size points used (462)

@ Compare real measures against reference measures

Reference measures
Data: codelet data
Result: codelet results
begin

Real measures
Data: codelet data
Result: codelet results
begin
Monitoring _Start() for rep = 1 to NREF do
for rep — 1 to NREP do Monitoring Stari()
| Codelet() Cadelet()

Monitoring_ Stop() Monitoring_Stop()

end end

29/44

Technical challenges
0000

Measurements

Measurement precision

350

3,00

2,50
5
g 2,00 -I-sgg:lir\écs
T 150 ——REAL
E MEASURE
S 1,00
o

0,50

0,00 -

gy 0, S0y Bogy gy Mgy Doy, Doogy Do, Magy g, The possiblity
data size o
to define a

16,00

1400 threshold on
12,00 event count
51000

500 e

6,00 ——REAL

MEASURE

4,00

2,00

0,00

Togg <900 S0 0ogy SCogy 000y <0000y 0000y 20000, 005G, 70090000

data size 30/44

Technical challenges
000e

Measurements

Outline

@ Differential Analysis
@ Technical challenges
© PAMDA

© Conclusion

31/44

PAMDA
.
Introduction

Observations

Differential Analysis

@ A range of loop characterization capabilities

@ pathology cost assessment

@ A set of specialized tools: CQA, MTL, PROFILER

@ Common view of the binary (loops, functions,..)

Idea: analysis methodology

Use Differential Analysis as a coordination means between multiple
tools

32/44

PAMDA
©00000000

Analysis example

Case Study: PNBench

@ PNbench is an application used at the CEA
e OpenMP/MPI code

33/44

Analysis example

PAMDA analysis scheme

i LS/DL1 <

09-11
Balanced workload

0-0.9
CPU workload

=

—"! MAX(DL1,L5)/ REF
<0.9

|

= Unsaturation

>1.1
Memory bound

PAMDA
0@0000000

Condition
(to be verified)

Pathology
or

Performance asset

Sub-tree

34/44

PAMDA
00®000000

Analysis example

Differential Analysis: LS and DL1

30

w
2
o
>
o
e
]
E
=
f=
=]
S
=3
(5]
]
X
n
5
0
AL M BN GRS IR - O I I R A
Process Id

35/44

Analysis example

LS sub-tree selection

= LS /DL1

>1.1
Memory bound

PAMDA
000800000

0.9-1.1 _
Balanced workload

0-0.9
CPU workload

 pEcan I

™ MAX(DL1,.LS)/ REF
<0.9

He Unsaturation

Condition
(to be verified)

Pathology
or
Performance asset

Sub-tree

36/44

PAMDA

[e]e]e]e] Telelele)
Analysis example
LS sub-tree
MTL
Perfect
| strides
Discontinuous
i <
accesses
A, Varying
strides
Good temporal
| T | | ¥ strides
Temporal Locality <
“4.Poor temporal
locality
m Not costl
d Y
Array weight < ~al Costly
array
Condition Pathology
(to be verified) or Sub-tree

Performance asset

37/44

PAMDA

[e]e]e]ele] lelele)
Analysis example
LS sub-tree
Perfect
E— | ¥| strides
— iscontinuous <
accesses

A Varying
strides

Good temporal
m strides

Temporal Locality <

\Poor temporal
locality
m" | Not costl

P Y
= Array weight < ~a Costly
array
Condition Pathology b
(to be verified) or Sub-tree

Performance asset

38/44

PAMDA

0O00000e00

Analysis example

Differential Analysis: array weight

Loop arrays

@ Three arrays G1,
G5, G6

Array weight

Execution Time (G Cycles)

@ Determine memory
operations group
cost by deleting it

P >

i)
>
<>

ORI g
Process Id

39/44

PAMDA
000000080

Analysis example

LS sub-tree
| 7L

Perfect
Disconti | ¥ strides
iscontinuous
Retl accesses <] o[varying
strides MTL
Good temporal @ Trace only G6
m | ¥ locality .
% memory operations
Temporal Locali
b Y “aPoor temporal @ G6 had complex
locality) N
varying strides
| Not costly @ Hint: loop
: interchan
Array weight < Al Costly u2EE ge
array b
Condition Pathology b
(to be verified) or Sub-tree

Performance asset

40/ 44

PAMDA
000000008

Analysis example

Outline

@ Differential Analysis
@ Technical challenges
© PAMDA

© Conclusion

41/44

Conclusion

0

Contributions

Contributions

Differential analysis

@ Design, test and validation on real applications of new variants
@ More advanced instruction modification process
@ The ability to target more subtle perofrmance pathologies

@ Use Differential Analysis outside the performance analysis field:
SW/HD codesign

42744

Conclusion
oce

Contributions

Contributions

DECAN tool

@ Special handling of control flow corruption (In vivo)

@ Support for parallel programs: thread (OpenMP) and process based
@ Defining solutions and workarounds for a wide number of side effects

@ A stistical study on the accuracy of measurements

Analysis methodology: PAMDA

@ Use Differential Analysis as a coordiantion means between multiple
analysis tools

@ use the right effort (analysis technique) at the right moment

43/44

PAMD

Future work

Future work

@ The analysis method
o Continue the exploration of new variants following the analysis
needs
o Explore the use of the method in other areas: energy and
SW/HD codesign
e Integrate more tools in the analysis methodology PAMDA

@ The tool

e Improve the analysis time (multiple loops in a single run)
e Extend the tool to handle multi-path loops
e Develop support for other platforms (ARM)

44/ 44

Thank you !

Principle of Differential analysis
Identify the potential
costly instructions

MOVAPS 0(%RDI,%R8,8),%XMM4
~ MOVAPS 0x10(%RDI1.%R8.8).%XMM5
[DIVPD %XMM1,%XMM4
__DIVPD %XMM1,%XMM5 .
MOVAPS 0x20(%RDI1,%R8,8),%XMM6
~ MOVAPS 0x30(%RDI1.%R8,8).%XMM7
[DIVPD %XMM1,%XMM6
__DIVPD %XMM1,%XMM7
MOVAPS %XMM4,0(%RDI,%R8,8)
MULPD %XMM4,%XMM4
MOVAPS %XMM5,0x10(%RDI,%R8,8)
MULPD %XMM5,%XMM5
ADDPD %XMM4,%XMM3
ADDPD %XMMS5,%XMM2

ADDPD %XMM6,%XMM3
ADDPD %XMM7,%XMM2
CMP %RAX,%R8

JB Loop

46/44

Memory operations investigation - array cost

Groups subset (static analysis)

Two instructions are part of the same group if they target an
address using the same base and index register values

@ ADDSS 12(%RDI, %R8, 4), %XMMO0
@ ADDSS 24(%RDI, %R8, 4), %XMM1

Fast memory tracer (dynamic analysis)

Dynamic tracing of memory references of the loop. Groups are
constructed following the rules:

e I1 = [@L1,0H1] and I2 = [@L2,@H2]
0 ifILNI2# {0} —» G={I1,12}

Minimum loop slowdown is ~7 and maximum is ~37

47744

Memory operations investigation - array cost

EUFLUX (3D finite element CFD app)
Sparse matrix-vector product in a quadruply nested loop

doich=1.ncht
doig=1,igt
do k=1,ndof
do |=1,ndof
vecyli k) = vecylik) + ompuie kI vecx(jl)
vecylj. k) = vecyljk) + omplie.k.l) * vecx(i,l)
enddo
enddo

enddo
enddo

Motivations

Several arrays accessed:
need to detect the
delinquent ones

48/44

Memory operations investigation - array cost

@ Detect instruction groups

Analysis groups detected | analysis cost
Static analysis 10 0
Dynamic analysis 4 12.27

@ link assembly groups to source arrays with debug information

@ Delete an array at a time and monitor performance

49/44

Quantifying the access to individual memory structure
(Results)

30,00%
25,00%

20,00%

OMPL
] OMPU
B VECX
B VECY

15,00%

10,00%

5,00%

Contribution to execution time

0,00%

Number of cores

Conclusion:
-OMPL and OMPU are the delinquent arrays
- Focus on these two arrays: How they are accessed, the

interaction with the other arrays
50/44

Principle of Differential analysis
Identify the potential N Transform
costly instructions them

MOVAPS 0(%RDI,%R8,8),%XMM4
MOVAPS 0x10(%RDI,%R8, 8),%XMM5
XORPS ¥XMM1,%XMM4

XORPS %XMM1,%XMM5

MOVAPS 0x20(%RDI,%R8,8),%XMM6
MOVAPS 0x30(%RDI,%R8,8),%XMM7
XORPS %XMM1,%XMM6

XORPS %XMML1,%XMM7

MOVAPS %XMM4,0(%RDI,%R8,8)
MULPD %XMM4,%XMM4

MOVAPS %XMM5,0x10(%RDI1,%R8,8)
MULPD %XMMS5,%XMM5

ADDPD %XMM4,%XMM3

ADDPD %XMMS,%XMM2

ADDPD %XMMB,%XMM3
ADDPD %XMM7,%XMM2
CMP % RAX.%R8

JB Loop

51/44

Principle of Differential analysis

Identify the potential Tran_sform
g . — | the instruc- | — [Run and Compare J
costly instructions ‘i
ions

yyyyy

Generated binary Original binary
! !

Compare performance

52/44

Analysis example

Sample code:

real 8 A(N,16), scal, s(16) {Column oriented storage)
DO i= 1,16 (Parallel loop)
DOk=1,N
A(k,i) = Alk, i)/ scal
s(i) = s(i) + A(k, i) = A(k, i)
ENDDO
ENDDCO

Characteristics

@ Stride one, perfect load balance

@ Two potential problems: Divide and Reduction

53/44

Analysis example (2)

[cycles per iteration)
=~
o

. original version

Tt %% %, % % %%, %, %, T

Vector size [elements]

A time profile is performed on the original version of the code for
multiple data sets

54/44

Analysis example (3) - LS/FP analysis

Compute bound Memory bound

’ . Original version
W o
(FP operations deleted)

[
(LS operations deleted)

- @ o =
cSSg

60

o
=

40

oW
==

>

Execution time [cycles per iteraion)

10 e

% % % % % % % %

Vector size [elements]

Isolate the memory stream (LS) and the FP arithmetic stream (FP)

55/44

Analysis example (4) - Expensive instructions analysis

T 100
=]
® 90
= 80
270 W originaiversi
In iginal version
;; 60

NoDIV
250 | (division operations deleted)
g 40

N NORED

2 5 (reduction operation deleted)
g

210,

T % % % % %, %, %, T,

Vector size [elemenis]

Isolate the two important operations of the FP stream: division
and reduction

56/44

Identify instruction - Construct transformations . Inject monitoring -
subsets requests probes

Generate a new
binary

910010 010010
101 10101
1 1

Generated binary Original binary
A 1

Run program Run program
1 1

Compare performance

57/44

	Differential Analysis
	Technical challenges
	PAMDA
	Conclusion
	Appendix

