
ONE View: a fully automatic method for
aggregating key performance metrics and
providing users with a synthetic view of HPC
applications

William Jalby, Cédric Valensi, Mathieu Tribalat, Kevin Camus, Youhenn Lebras,
Emmanuel Oseret, Salah Ibnamar

Abstract One of the major issues in the performance analysis of HPC codes is
the difficulty to fully and accurately characterize the behavior of an application.
In particular, it is essential to precisely pinpoint bottlenecks and their true causes.
Additionally, providing an estimation of the possible gain obtained after fixing a
particular bottleneck would surely allow for a more thorough choice of which opti-
mizations to apply or avoid. In this paper, we present ONE View, a MAQAO module
harnessing different techniques (sampling/tracing, static/dynamic analyses) to pro-
vide a comprehensive human-friendly view of performance issues and also guide
the user’s optimization efforts on the most promising performance bottlenecks.

1 Introduction

The evolution of the recent HPC processors has shown an increase in both, the
number of components (larger multi-core/many-cores), and in terms of mechanism
complexity (advanced out of order, multilevel memory hierarchies). These trends
make the task of application optimization more and more complex: not only the
sources of potential performance loss have become more diverse, but several of
them can occur simultaneously and with different impacts. Additionally, sorting out
the sources from the consequences of performance losses, therefore identifying the
right issue to be addressed, becomes increasingly difficult.

To face such challenges, the most advanced performance tools rely heavily on
hardware performance counters to locate and identify performance issues. Although
the recent generation of microprocessors have increased the number (up to several

W. Jalby e-mail: william.jalby@uvsq.fr · C. Valensi e-mail: cedric.valensi@uvsq.fr · M. Trib-
alat e-mail: mathieu.tribalat@uvsq.fr · K. Camus e-mail: kevin.camus@uvsq.fr · Y. Lebras e-
mail: youenn.lebras@uvsq.fr · E. Oseret e-mail: emmanuel.oseret@uvsq.fr · S. Ibnamar e-mail:
mohammed-salah.ibnamar@uvsq.fr
Exascale Computing Research and Université de Versailles St-Quentin-en-Yvelines

1



2 W. Jalby et al.

thousands) of performance events which can be monitored, very often they fail in de-
livering to the code developers the type of information needed. For example, when
looking for potential improvements to an array access (through blocking or array
restructuring), a code developer first needs to know whether it is really the critical
performance issue to be tackled, and second, to know how much performance gain
can be obtained after applying a specific optimization. If performance counters can
help at identifying critical issues (although with some strong limitations), they are
completely unable to evaluate the performance impact of a code change. In fact, per-
formance counters are great in providing information on hardware resource usage
but not in guiding the code developer through optimization choices. Additionally,
code developers need to get an idea of the confidence they can have in the results
provided by performance tools. Very few tools provide even a basic estimation of
the quality of the measurements carried out. Therefore, the code developer can be
completely misled and waste substantial time and efforts on a non-existing issue.
Finally, the code developers will mostly be interested in optimizing the code for
different data sets and for different configurations (number of cores, nodes, ...), thus
needing to aggregate performance views across different cases to study the perfor-
mance impact and select the right trade off. Unfortunately, this simple aggregation
capacity is missing in most of today’s performance tools.

In this paper, we will present the ONE View module, an element of the MAQAO
performance analysis framework, which aims at precisely helping the code devel-
oper in selecting, with some reasonable confidence, the most profitable optimiza-
tions. The main contributions of ONE View (presented in this paper) are:

• Provide a methodology and tools capable of projecting/evaluating the potential
performance gain of important code optimizations such as: vectorization (full
and partial), blocking, array restructuring, prefetching, etc.

• Aggregate static analysis and dynamic measurements, and combine sampling and
tracing to provide the user with a full assessment of the application performance
behavior.

• Present quality estimates on the measurements carried out allowing the user to
get a precise degree of “confidence” in the results provided.

• Provide a framework for automatically generating performance views across
multiple configurations, data sets or code variants.

Section 2 briefly presents tools with similar approaches. Section 3 presents the ex-
perimental setup used to demonstrate ONE View capabilities on a real full strength
application, QMCPACK. Section 4 briefly describes the two major modules in
charge of the ”what if scenarios” (CQA for static evaluation and DECAN for dy-
namic evaluation). Section 5 gives an overview of ONE View’s organization and
Section 6 presents a complete set of results obtained on QMCPACK. Section 7 de-
scribes how these results could be used to improve the performance of QMCPACK.
Finally, Section 8 covers our conclusion and future work directions.



ONE View: a fully automatic method for aggregating key performance metrics 3

2 State of the Art

Performance optimization has long been dominated by the iterative process of de-
veloping the code, measuring its performance on a target platform, analyzing the
measured data to identify inefficiencies, and modifying the code to improve per-
formance. Significant advancements have been achieved by the performance tools
community in the domain of probe-based and sample-based instrumentation [5] [9],
access to high-resolution timers and hardware counters [12] [10], and parallel profil-
ing and tracing measurement [7] [6] [8] [5] that can scale to fit large HPC machines.
Other tools [15] [14] profile the application to generate a synthetic distribution (MPI,
OpenMP, CPU, IO...), or combine sampling, loop trip count instrumentation and
code static analysis to report vectorization metrics and other code patterns [13] but
do not provide an estimation of the projected gain after optimization.

Presently, the state-of-the-art performance analysis tools can process large par-
allel profiles and trace data [5] [10] [6] [7] [11] generated from performance ex-
periments as well as produce results that generally reflect basic properties of HPC
application execution (e.g., time distribution, hardware behavior, load imbalance,
synchronization barriers, ...) with a strong focus on parallelism issues such as the
use of MPI and OpenMP. However, there is much less support for automated rea-
soning about performance problems and guidance for performance improvement.
Similarly, the reliability of the results is seldom evaluated by the tools themselves.

3 Experimental Setup

To demonstrate ONE View’s capabilities, we will present in the next sections mea-
surements performed on a Skylake, Intel(R) Xeon(R) Platinum 8170 CPU @ 2.10
GHz with 186 GB 6-channel 2666 MHz DDR4 RAM. The target reference applica-
tion is QMCPACK [16]: an open-source, C++, high-performance electronic struc-
ture code that implements numerous Quantum Monte Carlo algorithms. In this pa-
per, we used the QMCPACK version from NiO ECP Benchmark Suite, the INTEL
compiler 19.0.1.144 and the INTEL MKL Library 2019.1.144

4 Evaluating performance gains of code transformations

To evaluate the potential gain of a transformation on a loop, we rely on two different
tools (CQA and DECAN) using different evaluation methods but operating along
the same principles. Starting from the original assembly code, we first generate an
assembly code variant which corresponds to the code after transformation. Then,
the performance of this variant is either computed using static methods (CQA) or
directly measured by running the variants (DECAN).



4 W. Jalby et al.

4.1 CQA: Code Quality Analyzer

CQA [1] is a static analysis module which computes various code quality metrics
(characteristics of the Control Flow Graph, length of the critical data path, etc, ...)
on a segment of a binary code. In particular, for a sequence of basic blocks, CQA
produces a timing estimate (number of cycles). This performance estimate relies on
a simple hardware model assuming infinite buffer sizes but using an exact functional
unit configuration and exact instruction timings: latency and throughput (see [4]
which provide detailed information on instruction behavior for all of the x86 family
of processors). Since CQA is operating statically, no information is available to
determine operand location in the memory hierarchy. By default, CQA will assume
that all of the data accesses are serviced from L1. In addition to this simple L1
estimate, CQA will produce L2 (resp. L3, RAM) estimates corresponding to data
accessed serviced from L2 (resp. L3, RAM).

CQA basic capabilities have been augmented to generate variants obtained by
modifying the original assembly. Since these variants will not be executed but sim-
ply evaluated using the CQA performance model, there is no constraint on the mod-
ifications performed. Three main variants are used:

Fig. 1 The vertical y-axis displays the cumulative speedup (on the whole QMCPACK application)
which could be obtained by cleaning the loops (removing potential inefficiencies). The horizontal
x-axis lists the loops by their decreasing impact in terms of performance gains.

• CODE CLEAN: in this variant, all of the non FP operations are suppressed. The
main goal of this variant is to detect cases where the compiler has generated po-
tentially inefficient code. This inefficiency will be quantitatively assessed by run-
ning CQA on the “Clean Variant” and comparing the obtained timings with the
original ones. Typically, these inefficiencies can be eliminated by using proper
compiler switches or permuting loops.



ONE View: a fully automatic method for aggregating key performance metrics 5

• FP VECTOR: in this variant, first, all of the scalar FP arithmetic instructions
are replaced by their vector counterparts. Correspondingly, the load and store
instructions which, by the variant definition, have to remain scalar, are replicated
and adapted to fill in and use the vector register content.

Fig. 2 The vertical y-axis displays the cumulative speedup (on the whole QMCPACK application)
which could be obtained by fully vectorizing the loops. The horizontal x-axis lists the loops by
their decreasing impact in terms of performance gains.

• FULL VECTOR: in this variant, both, scalar arithmetic, and scalar memory
(load/store) instructions are replaced by their vector counterparts. However, non
unit stride data accesses (which have no direct vector equivalent) are left scalar
or replaced by scatter/gather instructions on the most recent CPU versions. This
code variant is essentially equivalent to the code which would be generated by
using the SIMD directive which forces the compiler to produce vector code ig-
noring potential data dependencies.

Figure 1 (resp 2) displays the performance of the Code Clean (Full Vector) vari-
ants in QMCPACK. It can be clearly seen that globally, the compiler has generated
very efficient code. The maximum potential gain of cleaning (fine tuning) the code
would be at most 2,5% and this would require an effort on 25 loops (see Figure 1)
which represent quite a large effort for a limited potential gain. As it can be seen
on Figure 2, the potential of full vectorization is higher, up to 8% in total with two
loops which can offer a performance gain of 1% each.



6 W. Jalby et al.

4.2 DECAN: Differential Analysis

The main goal of Differential Analysis is to precisely identify delinquent instruc-
tions (carrying a high performance penalty) and provide a quantitative assessment
of their impact. This is performed using DECAN [2], a MAQAO module capable of
modifying a loop in the binary file by removing or transforming a subset of instruc-
tions through binary rewriting. DECAN can also run and time the modified binary
(called a DECAN variant) in order to compare its time with the original unmodified
binary time. Given that these transformations can significantly alter the execution,
the final application’s output will be similarly impacted and its results will most
likely be erroneous. In order to limit this impact, extra steps are added to restore
the application’s context after the measurements are performed. In any case, these
variants are not expected to produce meaningful results, since their purpose is the
gathering of performance data.

DECAN applies different binary transformations to generate multiple variants.
Then, by comparing DECAN variants timings with the original timing, the tool
determines the impact on performance of removing/transforming the target subset
of instructions. The values of useful hardware event counters are also collected.

In the context of this article, we will focus on the DECAN transformations used
in the most significant analyses displayed in ONE View:

• LS Stream: This transformation removes all instructions in target loops except
data accesses (loads and stores) and loop control. Observing a large speedup
on this variant compared to the original version indicates that the Load/Store
instructions are not the limiting factor and that the loop is computation bound.

• FP Stream: This transformation removes all instructions in target loops except
those performing FP arithmetic and loop control. A large speedup on this variant
indicates that FP arithmetic instructions are not the limiting factor and that the
loop is memory (data access) bound.

• DL1: In this variant, all load and store instructions of a target loop are set so that
the same address is accessed across different iterations. This ensures that all data
accesses are serviced from the L1 cache level. A speedup on this variant means
that the corresponding loop suffers from L1 cache misses.

Additional transformations allow to evaluate the front-end stress by replacing all
instructions with no-operation instructions (FES transformation), or the correct op-
eration of the prefetcher by inserting prefetch instructions.

In the next section, the use of FP and LS variants will be demonstrated. Fig-
ure 3 presents the impact of DL1. At the opposite of the previous transformations
(Code Clean and Full Vectorization) which showed limited performance gains, DL1
shows potential large benefit, a single loop transformation bringing about 30% of
performance improvement.



ONE View: a fully automatic method for aggregating key performance metrics 7

Fig. 3 The vertical y-axis displays the cumulative speedup (on the whole QMCPACK applica-
tion) which could be obtained by perfect blocking. The horizontal x-axis lists the loops by their
decreasing impact in terms of performance gains

5 ONE View: Automated characterization of applications and
reporting

In this section, we will describe the overall organization of the ONE View tool. We
will start by first describing the profiling tools.

5.1 Profiling

The primary goal of Profiling is to identify and locate the key contributors (func-
tions, loops) to total execution time. Within the MAQAO framework, two profiling
techniques are used: sampling and tracing.

The MAQAO LProf module is a lightweight profiler relying on hardware coun-
ters sampling to ensure minimal overhead with respect to time and memory usage.
LProf provides performance data on functions and loops, and also identifies which
should be further investigated.

The MAQAO VProf (Value profiling) module inserts timing probes in the binary
file to perform standard tracing measurements. VProf goes further by analyzing each
loop instance execution and building a loop behavior summary across the whole
application. Loops are known to be executed multiple times (millions, even billions
of times) within a single application run. For each loop execution, the Cycles Per
Iteration (CPI) value and loop instance number are recorded in “buckets” and sorted
according to the CPI. Recording the loop instance number is essential in order to
reproduce or track a loop’s behavior. This analysis is critical because loops can



8 W. Jalby et al.

exhibit very different behaviors depending upon the iteration count or cache states.
With VProf, the user is capable of not only locating performance issues at loop
level, but also at the loop instance level. This allows to rebuild the call chain and
precisely locate the issue. In a first pass, 31 instances - representative of a bucket -
are identified and will then be used in all further measurements. Using these multiple
results, standard statistical metrics (mean, standard deviation, etc...) are calculated,
providing an assessment of the quality of the measurement performed.

5.2 Overall ONE View organization

ONE View is a MAQAO module in charge of: a) launching all of the other perfor-
mance modules, b) formatting their output, and c) aggregating the various perfor-
mance views in an HTML report, a spreadsheet in the XLSX format, or as formatted
text. ONE View offers three levels of reporting:

1. REPORT ONE: only LProf and CQA are invoked in order to generate a light
application profile and to statically analyze every loop. Generating this report
entails a ∼10% estimated overhead.

2. REPORT TWO: this report includes analyses from REPORT ONE and adds re-
sults from a VProf analysis and the DECAN DL1 transformation on the hottest
loops of the application. This level requires running the application multiple
times thus the resulting overhead is higher (x3). This report provides a full
static analysis of vectorization and the Locality analysis performed by DECAN
through DL1.

3. REPORT THREE: this report includes analyses from REPORT TWO with ad-
ditional DECAN analyses of all variants as well as the collection of hardware
performance events. This level requires to run all DECAN variants and the re-
sulting overhead is much higher, between 2x and x10 depending upon the number
of hardware events to be monitored.

ONE View manages the invocation of the various modules with the adequate con-
figurations and options (list of hardware events, ...). The DECAN variants and the
various measurements are performed in a single run, heavily using the large number
of instances of the same loop. Because the measured loops represent a very small
fraction of the overall loop instances, the overhead for a given run is very limited and
the corresponding slowdown compared to the original execution time is under x2.
To limit the time spent profiling, the user can first run ONE View One (low overhead
reporting) and from the obtained results select the hot loops to further investigate.
Reducing the number of target loops drastically reduces the overall profiling time.

The concepts presented above can be easily extended to multi-core and multi-
node applications. For this, an additional ONE View mode focuses on the scala-
bility properties of loops and/or parallel regions. The ONE View Scalability mode
performs multiple invocations of a parallel application with different numbers of
threads, processes and nodes defined by the user. The tool then aggregates the re-



ONE View: a fully automatic method for aggregating key performance metrics 9

sults to compute the efficiency (defined as the ratio between the observed speedup
and the expected ideal speedup considering the number of threads) at the applica-
tion, function, and loop levels.

Figure 4 below shows how all of the modules are combined to provide a detailed
performance analysis [3].

Fig. 4 Methodology outline

6 ONE View Results

In this section, we will present the results produced by ONE View, focusing on a
comprehensive set of results particularly useful for the analysis of QMCPACK.

ONE View results are organised along views corresponding to different levels of
analyses.

6.1 Global view

This view presents an estimation of the overall quality of the program with regard
to performance and the possible improvements to be expected. It includes a set of
global metrics, the graphs presenting “what if” scenarios derived from CQA and
DECAN analyses (see figures 1, 2 and 3), and a summary of the experiment.

The global metrics aim at giving an overall view of the quality of the code. They
include the following values:

• Timing: Total execution time of the application; and the percentage spent in
loops and innermost loops.

• Compilation Options: List of standard optimisation options that were not used
when compiling the application. These options include optimisation and archi-
tecture specialization flags.

• Flow Complexity: Average number of paths in loops. Values closer to 1 are
better, since a complex flow makes it harder for the compiler to optimize.



10 W. Jalby et al.

Fig. 5 Global Metrics for QMCPACK. Values are colored from green to red depending on how
they influence the program performance (from good to bad).

• Array Access Efficiency: Estimation of the regularity of accesses to array el-
ements across the whole application. Higher values mean that most arrays are
accessed regularly or at a fixed stride.

• What-if scenarios: These metrics are derived from the “what if” scenarios pro-
duced by CQA and DECAN. They include for each of them the potential speedup
to be expected over the whole application if the optimisation could be applied to
every loop in the file, and the number of loops to optimise to obtain 80% of this
speedup.

Figure 5 presents an example of these metrics for the initial version of QMC-
PACK. In this case, the expected speedups if cleaning or vectorizing the code are
low. Conversely, the speedup expected for improving data caching is significantly
higher, and would require only 3 loops to reach 80%. The average number of paths
by loop is 1.4, which means that some improvements could also be expected by
simplifying the control flow.

6.2 Profiling results

These views focus on the results gathered from the LProf profiling module.
A first view summarises them to provide information on the general profile of the

application. It includes a categorization view showing where time is spent in the ap-
plication or its external dependencies: main application, MPI or OpenMP runtime,
memory management, I/O, specialized libraries, etc. It also contains a breakdown



ONE View: a fully automatic method for aggregating key performance metrics 11

Fig. 6 Code Categorisation for QMCPACK, displaying the percentage of time spent in various
code categories involved when executing the application. The three top categories are Binary,
which corresponds to the application itself, Maths, which corresponds to functions defined in spe-
cialised libraries such as the MKL, and OMP, which corresponds to the functions of the OpenMP
runtime specifically

Fig. 7 Function List for QMCPACK. This view lists the functions identified in the application
in decreasing order of their coverage. Functions can be expanded to display the loop nests they
contain. Functions or loops with a too short execution time are highlighted in orange or red to
signal an unreliable value. The Deviation column displays the variation between the coverage of
the given function or loop across the different threads of the application.

of the relative coverage of each loop and function of the application allowing to
identify how many loops and functions are worth investigating/optimizing. Figure
6 presents an example of the categorization view for QMCPACK. A second more
detailed view displays the coverage of each function and of the loops they contain,
along with their load distribution across the threads on which the application was ex-



12 W. Jalby et al.

ecuted and the call chains leading to their invocation. Figure 7 presents an example
of this view for QMCPACK.

6.3 Loop summary

This view presents all information available on loops, regrouping results from every
MAQAO modules involved in the analysis.

Fig. 8 Loops Expert Summary for QMCPACK. Column ORIG corresponds to the original version
of the code, the others to the DECAN transformations with the same name (see 4.2). Values high-
lighted in red signal a highly unreliable result (execution time below 250 cycles), orange a weakly
reliable result (time between 250 and 500), and not highlighted a reliable result (time above 500).

The metrics available include the CQA speedup predictions if the loop can be
vectorized or cleaned, the timing of the DECAN variants, and their stability. The
stability of a given measure is computed as (Tmedian − Tmin)÷ Tmin, where Tmedian
and Tmin are respectively the median and minimal values across all 31 measurements
of the buckets. It can be computed globally for a loop and by buckets.

Figure 8 presents an example of this summary for the initial version of QM-
CPACK limited to the DECAN variants timings. The loops bound by computation
(resp. memory access) can be detected by the timing of the FP variant (resp. LS vari-
ant) being close to the timing of the original (ORIG variant). The DECAN timings
offer a quantitative estimate of the difference between computation and memory.

Figure 9 adds the stability metrics and iteration counts of the loops. The stability
metrics allows to estimate the reliability of a measure. A higher metric means that
the value has been varying more between measurements. The relative instabilities
of the hottest loops are due to memory accesses.



ONE View: a fully automatic method for aggregating key performance metrics 13

Fig. 9 Extended Loop Expert Summary for QMCPACK. Values highlighted in red signal a highly
unreliable result (execution time below 250 cycles), orange a weakly reliable result (time between
250 and 500), and not highlighted a reliable result (time above 500). For each variant, the columns
STA contain the stability metric of the results (lower is better).

6.4 Scalability results

This view presents the metrics related to the application scalability. The main met-
rics computed during a scalability run are the speedup and efficiency (as described
in 5.2). In the case of a weak scaling application, the efficiency does not take into
account the number of threads.

Fig. 10 Weak Scalability Runs Description for QMCPACK. This presents the various parameters
used for each run, such as the number of processes, thread, nodes, ...

Figure 10 presents a description of the scalability runs, including the various
parameters varying from one run to another. Figure 11 displays the coverage of
the various code categories of code (such as MPI, OpenMP, memory handling, or
the application itself) across the different runs involved in the scalability analysis.



14 W. Jalby et al.

Fig. 11 Weak Scalability Coverage by Category for QMCPACK. Coverages are expressed in per-
centages. The x-axis references the runs by the names used in figure 10

Figure 12 displays the efficiencies of the hottest application loops. Since this is a
weak scalability application, most of them are close to 1.

7 Application to QMCPACK

The vectorization of QMCPACK was already quite satisfactory: CQA analyses
showed that only a 8% speedup at most could be expected if achieving full vec-
torization on all loops (as shown in figures 5 and 2). However, it was possible to
obtain significant speedups by focusing on other performance issues.

One such issue was the detection by CQA of a large number of paths in a few
loops. These loops were perfectly vectorized but the compiler generated a very com-
plex control flow around the vector instructions. The source code contained a loop
nest (7 iterations) annotated with a full unroll directive, ignored by the compiler.
This was fixed by fully unrolling by hand the problematic loop nest, yielding a
speedup between 7 and 9% at application level.



ONE View: a fully automatic method for aggregating key performance metrics 15

Fig. 12 Loop weak scalability report for QMCPACK. The runs are referenced by the names used
in figure 10. Efficiency values are highlighted from green (satisfactory) to red (can be improved).

Another issue detected by CQA was a loop containing a large number of stack
accesses, unbalanced port usage due to the presence of “special” instructions, and
partial vectorization. This was due to a large loop body that overwhelmed compiler
optimization capacities. This was addressed by splitting the loop in order to reduce
its complexity to a level manageable by the compiler, yielding a speedup of 1% at
application level.

It was also possible to detect from DECAN analyses that reducing L1 traffic held
a strong potential benefit (as seen on figure 3). This was addressed by adding for
some loops a surrounding loop providing some data reuse (blocking) which could
be exploited by Unroll and Merge, yielding a 20% speedup at application level.

The cumulative speedup of these optimisations reached 30% at application level.

8 Conclusion

ONE View allows automating the launching of several tools, formatting their out-
puts and providing the end user with aggregated views of performance metrics. In
addition, ONE View provides detailed performance analyses of optimizations such
as vectorization (full or partial) and loop blocking. Such a tool is of critical im-
portance in the HPC world where architectures are becoming increasingly complex
making the code optimization task extremely tedious.

ONE View has been successfully used to optimise industrial and academic appli-
cations such as Yales 2 or QMCPACK.

Future works will focus on following the evolution of architectures to provide
up-to-date information, expanding the analysis capabilities of ONE View by adding



16 W. Jalby et al.

new modules focusing on other aspects of the performance analysis process and
further increasing its usability for non performance optimisation experts.

9 Acknowledgements

This work was funded by the CEA, GENCI, INTEL and UVSQ in the framework
of the Exascale Computing Research collaboration, and also by the French Min-
istry of Industry in the framework of PERFCLOUD, ELCI and COLOC European
projects.

The authors also wish to thank D. Kuck, V. Lee, J. Kim and D. Wong from INTEL
for their help with the QMCPACK application.

References

1. Oseret, E., Charif-Rubial, A, Noudohouenou, J., Jalby, W., Lartigue, G.: CQA: A code quality
analyzer tool at binary level. 21st International Conference on High Performance Computing,
HiPC 2014, Goa, India, December 17-20, 2014.

2. Koliaı̈, S., Bendifallah, Z., Tribalat, M., Valensi, C., Acquaviva, J., Jalby, W.: Quantifying
Performance Bottleneck Cost Through Differential Analysis. 27th International ACM Con-
ference on International Conference on Supercomputing, ICS 2013, Eugene, Oregon, USA.

3. Bendifallah, Z., Jalby, W., Noudohouenou, J., Oseret, E., Palomares, V., Charif-Rubial, A.:
PAMDA: Performance Assessment Using MAQAO Toolset and Differential Analysis. 7th
International Workshop on Parallel Tools for High Performance Computing, September 2013,
ZIH, Dresden, Germany.

4. Fog, A., https://www.agner.org/optimize/instruction tables.pdf
5. Shende, S. S., Malony, A. D., The Tau Parallel Performance System, Int. J. High Perform.

Comput. Appl.
6. Geimer M., Wolf F., Wylie B. J., Ábrahám E., Becker D., and Mohr B., “The scalasca perfor-

mance toolset architecture,” Concurrency and Com- putation: Practice and Experience
7. Adhianto L., Banerjee S., Fagan M., Krentel M., Marin G., Mellor- Crummey J., and Tal-

lent N. R., “HPCToolkit: Tools for performance anal- ysis of optimized parallel programs,”
Concurrency and Computation: Practice and Experience

8. Knüpfer A., Brunst H., Doleschal J., Jurenz M., Lieber M., Mickler H., Müller M. S., Nagel
W. E., “The vampir performance analysis tool- set,” Tools for High Performance Computing

9. Hollingsworth J., Buck B., An API for Runtime Code Patching, Winter 2000 Journal of High
Performance Computing Applications

10. “INTEL VTuneTMAmplifier,” https://software.intel.com/en-us/intel-vtune-amplifier-xe.
11. Arm Forge https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-

tools/arm-forge
12. Treibig J., Hager G., Wellein G., Likwid: A lightweight performance-oriented tool suite for

x86 multicore environments, Parallel Processing Workshops (ICPPW) 2010
13. INTEL Advisor, https://software.intel.com/en-us/advisor
14. Intel Application Performance Snapshot https://software.intel.com/sites/products/snapshots/application-

snapshot/
15. ARM Forge https://www.arm.com/products/development-tools/server-and-hpc/forge
16. Kim J. et al, QMCPACK: an open source ab initio quantum Monte Carlo package for the

electronic structure of atoms, molecules and solids


